Application Note

AN_445

Using FT4222H with Standard FTDI Devices

Version 1.0

Issue Date: 21-08-2023

This document shows how to easily integrate FT4222H into existing applications with standard FTDI devices like FT232R, FT-X, FT232H, etc.

Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify, and hold FTDI harmless from any and all damages, claims, suits, or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758
Web Site: http://ftdichip.com
Copyright © Future Technology Devices International Limited
Table of Contents
1 Introduction ... 3
2 FT4222H D2XX supported APIs ... 4
3 Example Code ... 5
 3.1 Code Listing ... 6
 3.2 Program Execution .. 8
4 Conclusion .. 10
5 Contact Information ... 11
Appendix A – References ... 12
 Document References ... 12
 Acronyms and Abbreviations... 12
Appendix B – List of Tables & Figures ... 13
 List of Figures .. 13
Appendix C – Revision History ... 14
1 Introduction

The FT4222H is a High/Full Speed USB2.0-to-Quad SPI/I2C device controller and can be easily integrated into existing applications using standard FTDI devices like FT232R, FT-X, FT232H, etc.

FT4222H must be used with the D2XX drivers and LibFT4222, but standard FTDI devices use the D2XX drivers directly (no additional library required). Note that there are some restrictions on which D2XX APIs can be used with FT4222H directly and this is detailed in Section 2.

This document focuses on D2XX applications however VCP applications could also be integrated with FT4222H, though FT4222H is incompatible with VCP APIs. Such an application would continue to use VCP APIs for the standard FTDI device, and integrate D2XX and LibFT4222 APIs for the FT4222H device.

AN_329 User Guide for LibFT4222 details the APIs to be used with FT4222H and the D2XX Programmer’s Guide details the standard D2XX APIs.

The overall system architecture for such a development is shown in Figure 1.1.

![Figure 1.1 System Architecture](image-url)
2 FT4222H D2XX supported APIs

Some standard D2XX APIs can be used with FT4222H. These are listed below. Otherwise, the APIs detailed in AN_329 User Guide for LibFT4222 must be used with FT4222H.

- FT_CreateDeviceInfoList
- FT_GetDeviceInfoList
- FT_GetDeviceInfoDetail
- FT_ListDevices
- FT_Open
- FT_OpenEx
- FT_Close
- FT_SetTimeouts
- FT_SetLatencyTimer
- FT_GetLatencyTimer
- FT_GetDeviceInfo
- FT_SetBitMode
- FT_SetUSBParameters
- FT_VendorCmdSet
- FT_VendorCmdGet
- FT_VendorCmdGetEx
- FT_Purge
- FT_ResetDevice
- FT_SetEventNotification
- FT_GetStatus
- FT_ResetPort
- FT_Rescan
- FT_Reload
- FT_StopInTask
- FT_RestartInTask
- FT_CyclePort

Do not use any other D2XX APIs with FT4222H as they may conflict with LibFT4222.
3 Example Code

In this particular example, the UMFT4222EV and UM232H-B modules were used to list, open and close. The code example in section 3.1 uses the D2XX direct API commands to list all FTDI devices connected to the PC using FT_CreateDeviceInfoList and FT_GetDeviceInfoDetail. This will list all FT4222H and standard FTDI devices.

It opens FT4222H and FT232H devices by description using FT_OpenEx.

Then the user can write the rest of their application before closing both handles.

When writing the application, the FT4222H must use LibFT4222 APIs and the other FTDI device(s) must use the D2XX direct API commands.

The code can be compiled and executed using Visual Studio or other compatible IDE. See TN_153 Instructions on Including the D2XX Driver in a Visual Studio Express 2013 Project for more information. Also ensure that the latest ftd2xx and LibFT4222 libraries and header files are included into the project. The LibFT4222.dll should also be copied to the system32 or in the same place as the application executable otherwise the error shown in Figure 3.1 will be seen.

![Figure 3.1 System Error](image-url)
3.1 Code Listing

// include Standard libraries
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <string>

// include FTDI libraries
#include "ftd2xx.h"
#include "LibFT4222.h"

DWORD loopcount = 0;

// Function to convert flags to text
//
inline std::string DeviceFlagToString(DWORD flags)
{
 std::string msg;
 msg += (flags & 0x1)? "DEVICE_OPEN" : "DEVICE_CLOSED";
 msg += "; ";
 msg += (flags & 0x2)? "High-speed USB" : "Full-speed USB";
 return msg;
}

void ListFtUsbDevices()
{
 FT_STATUS ftStatus = 0;
 DWORD numOfDevices = 0;
 ftStatus = FT_CreateDeviceInfoList(&numOfDevices);
 for(DWORD iDev=0; iDev<numOfDevices; ++iDev)
 {
 FT_DEVICE_LIST_INFO_NODE devInfo;
 memset(&devInfo, 0, sizeof(devInfo));
 ftStatus = FT_GetDeviceInfoDetail(iDev, &devInfo.Flags, &devInfo.Type, &devInfo.ID, &devInfo.LocId, devInfo.SerialNumber, devInfo.Description, &devInfo.ftHandle);
 if (FT_OK == ftStatus)
 {
 printf("Dev %d:\n", iDev);
 printf(" Flags= 0x%x, (%s)\n", devInfo.Flags, DeviceFlagToString(devInfo.Flags).c_str());
 printf(" Type= 0x%8x", devInfo.Type);
 printf(" ID= 0x%8x", devInfo.ID);
 printf(" LocId= 0x%8x", devInfo.LocId);
 printf(" SerialNumber= %s\n", devInfo.SerialNumber);
 printf(" Description= %s\n", devInfo.Description);
 }
 }
}
```c
int main(int argc, char const *argv[]) {
    ListFtUsbDevices();
    FT_HANDLE ftHandle = NULL;
    FT_HANDLE ftHandle1 = NULL;

    /* Open FT4222H */
    FT_STATUS ftStatus;
    ftStatus = FT_OpenEx("FT4222 A", FT_OPEN_BY_DESCRIPTION, &ftHandle);
    if (FT_OK != ftStatus) {
        printf("\nOpen a FT4222H device failed!\n");
        return 0;
    } else {
        printf("\nOpen a FT4222H device passed!\n");
    }

    /* Open FT232H */
    ftStatus = FT_OpenEx("UM232H-B", FT_OPEN_BY_DESCRIPTION, &ftHandle1);
    if (FT_OK != ftStatus) {
        printf("\nOpen a UM232H device failed!\n");
        return 0;
    } else {
        printf("\nOpen a UM232H device passed!\n");
    }

    /* Application Code Here */
    printf("\nInsert Application code here!\n");

    /* Close FT4222 and FT232H devices */
    printf("\nUnInitialize FT4222H\n");
    FT4222_UnInitialize(ftHandle);
    printf("\nClose FT4222H and FT232H devices\n");
    FT_Close(ftHandle);
    FT_Close(ftHandle1);
    printf("\n");
    return 0;
}
```
3.2 Program Execution

The output of the program execution is shown in Figure 3.2.

It lists the UM232H-B and 2 x FT4222H interfaces since the FT4222H is configured in MODE0. See the FT4222H Datasheet for more information on the different FT4222H modes which will affect the number of interfaces seen.

Dev 0:

Flags= 0x2, (DEVICE_CLOSED, High-speed USB)
Type= 0x8
ID= 0x4036014
LocId= 0x2131
SerialNumber= FTVN798K
Description= UM232H-B
ftHandle= 0x0

Dev 1:

Flags= 0x2, (DEVICE_CLOSED, High-speed USB)
Type= 0xa
ID= 0x403601c
LocId= 0x21321
SerialNumber= A
Description= FT4222 A
ftHandle= 0x0

Dev 2:

Flags= 0x2, (DEVICE_CLOSED, High-speed USB)
Type= 0xa
ID= 0x403601c
LocId= 0x21322
SerialNumber= B
Description= FT4222 B
ftHandle= 0x0

Open a FT4222H device passed!
Open a UM232H device passed!

Insert Application code here!

UnInitialize FT4222H

Close FT4222H and FT232H devices

Press any key to continue . . .

Figure 3.2 Program Execution
4 Conclusion

This application note has shown how easily FT4222H can be integrated into existing applications which are already using standard FTDI D2XX devices.
5 Contact Information

Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA
Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan
Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China
Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

Distributor and Sales Representatives
Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A – References

Document References

D2XX Drivers
D2XX Programmer's Guide

FT4222H Product Page
LibFT4222
UMFT4222EV Development Module

UM232H-B Development Module

TN_153 Instructions on Including the D2XX Driver in a Visual Studio Express 2013 Project

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>D2XX</td>
<td>D2XX direct (driver)</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VCP</td>
<td>Virtual COM Port (driver)</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables & Figures

List of Figures

Figure 1.1 System Architecture... 3
Figure 3.1 System Error... 5
Figure 3.2 Program Execution... 9
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>21-08-2023</td>
</tr>
</tbody>
</table>