Future Technology Devices International Ltd

USB to RS232 Serial Converter Range of Cables

Datasheet
1 Description

The **USB_RS232** cables are a family of USB to RS232 levels serial UART converter cables incorporating FTDI’s FT232RQ USB to serial UART interface IC device which handles all the USB signalling and protocols. The cables provide a fast, simple way to connect devices with a RS232 level serial UART interface to USB.

Each USB-RS232 cable contains a small internal electronic circuit board, utilising the FT232RQ, which is encapsulated into the USB connector end of the cable. The FT232RQ datasheet, **DS_FT232R**, is available at https://ftdichip.com/. The integrated electronics also include the RS232 level shifter plus Tx and Rx LEDs which give a visual indication of traffic on the cable (if transparent USB connector specified).

The other end of the cable is bare, tinned wire ended connections by default, but can be customised using different connectors to support various applications.

Cables are FCC, CE, UKCA and RoHS compliant.

The USB side of the cable is USB powered and USB 2.0 full speed compatible. Each cable is 1.8m long and supports a data transfer rate up to 1 Mbaud. Each cable supports the FTDIChip-ID™, with a unique USB serial number programmed into the FT232RQ. This feature can be used to create a security or password protected file transfer access using the cable. Further information and examples on this feature are available at https://ftdichip.com/ under FTDIChip-ID Projects.

The USB-RS232 cables require USB drivers, available free from https://ftdichip.com/, which are used to make the FT232RQ in the cable appear as a virtual COM port (VCP). This then allows the user to communicate with the USB interface via a standard PC serial emulation port (for example TTY). Another FTDI USB driver, the D2XX driver, can also be used with application software to directly access the FT232RQ on the cable though a DLL. This is illustrated in the Figure 1.1.

![Various Connector Options](image)

Various Connector Options

- Wire Ended
- Customised connectors

USB_RS232

![Software application access to USB via D2XX](image)

Software application access to USB via D2XX

Figure 1.1 Using the USB-RS232 Cable
2 Cable Part Numbers

The following Table 2.1 gives details of the available USB-RS232 cables.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>End Connector*</th>
<th>Cable details</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB-RS232-WE-1800-BT-0.0</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 0.0 = RED wire is 0V</td>
<td>Wire Ended (no connector)</td>
<td>1.8m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>USB-RS232-WE-5000-BT-0.0</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 0.0 = RED wire is 0V</td>
<td>Wire Ended (no connector)</td>
<td>5.0m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>USB-RS232-WE-1800-BT-3.3</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 3.3 = RED wire is 3.3V</td>
<td>Wire Ended (no connector)</td>
<td>1.8m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>USB-RS232-WE-5000-BT-3.3</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 3.3 = RED wire is 3.3V</td>
<td>Wire Ended (no connector)</td>
<td>5.0m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>USB-RS232-WE-1800-BT-5.0</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 5.0 = RED wire is 5V</td>
<td>Wire Ended (no connector)</td>
<td>1.8m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>USB-RS232-WE-5000-BT-5.0</td>
<td>USB to UART cable with RS232 level UART signals. Black cable, Transparent USB connector 5.0 = RED wire is 5V</td>
<td>Wire Ended (no connector)</td>
<td>5.0m cable,6 core, UL2464 24 AWG, diam=5mm</td>
</tr>
<tr>
<td>* USB-RS232-CC-LLLL-CU-PWR</td>
<td>USB to UART cable with RS232 level UART signals. C = cable colour (B black or T transparent), U = USB connector colour (B black or T transparent) PWR = power supply output on red wire. 0.0 = 0V, 3.3=3.3V, 5.0=5V</td>
<td>CU = Connector description.</td>
<td>LLLL = Length of cable.</td>
</tr>
</tbody>
</table>

* FTDI supports customised end connector designs. For more information, please contact FTDI Sales Team (sales1@ftdichip.com)

Note: The tolerance for the 1.8meter length cable is +/-30mm and +/-50mm for 5meter length cable.

2.1 Certifications

FTDI USB-RS232 range of cables are fully RoHs compliant as well as CE, UKCA and FCC certified.
Table of Contents

1 Description .. 2
2 Cable Part Numbers ... 3
 2.1 Certifications ... 3
3 Typical Applications .. 5
 3.1 Driver Support ... 5
 3.2 Features .. 6
4 Features of FT232RQ applicable to USB-RS232 Cables .. 7
5 USB-RS232-WE-LLLL-CU-PWR .. 8
 5.1 USB-RS232-WE-PWR Connections and Mechanical Details 8
 5.2 USB-RS232-WE Cable Signal Descriptions .. 9
 5.3 USB-RS232-WE Electrical Parameters ... 9
6 Cable PCB Circuit Schematic .. 10
7 Contact Information ... 11

Appendix A - Cable EEPROM Configuration .. 12
Appendix B - List of Figures and Tables .. 13
Appendix C - Revision History ... 14
3 Typical Applications

- USB to serial RS232 level converter.
- Upgrading legacy peripherals to USB.
- Interface Microcontroller UART or I/O to USB.
- Interface FPGA or PLD to USB.
- USB Instrumentation PC interface.
- USB industrial control.
- USB password protected file transfers.

3.1 Driver Support

Royalty free VIRTUAL COM PORT (VCP) and D2XX Direct Drivers are available for the following Operating Systems (OS):

- Windows
- Linux
- Mac
- Android (J2xx / D2xx only)

See the following website link for the full driver support list including OS versions and legacy OS.

https://ftdichip.com/drivers/

Virtual COM Port (VCP) drivers cause the USB device to appear as an additional COM port available to the PC. Application software can access the USB device in the same way as it would access a standard COM port.

D2XX Direct Drivers allow direct access to the USB device through a DLL. Application software can access the USB device through a series of DLL function calls. The functions available are listed in the D2XX Programmer's Guide document which is available from the Documents section of our website.

Please also refer to the Installation Guides webpage for details on how to install the drivers.
3.2 Features

- USB-RS232 converter cable provides a USB to RS232 serial interface with customised end connectors.
- Entire USB protocol handled by the electronics in the cable USB.
- EIA/TIA-232 and V.28/V.24 communication interface with low power requirements.
- UART interface support for 7 or 8 data bits, 1 or 2 stop bits and odd / even / mark / space / no parity.
- Internal EEPROM with user writeable area.
- FTDI’s royalty-free VCP allow for communication as a standard emulated COM port and D2XX 'direct' drivers provide DLL application programming interface.
- Visual indication of Tx and Rx traffic via LEDs in the transparent USB connector.
- Fully assisted hardware (RTS#/CTS#) or X-On / X-Off software handshaking.
- Data transfer rates from 300 baud to 1 Mbaud.
- Support for FT232RQ FTDIChip-ID™ feature for improved security.
- Low USB bandwidth consumption.
- UHCI / OHCI / EHCI host controller compatible.
- USB 2.0 Full Speed compatible.
- -40°C to +85°C operating temperature range.
- Cable length is 1.80m or 5.0m.
- ESD Protection for RS-232’/O’s ±15kV Human Body Model (HBM)
 ±15kV EN61000-4-2 Air Gap Discharge
 ±8kV EN61000-4-2 Contact Discharge
- FCC, UKCA and CE compliant.
- Custom versions available on request (subject to MOQ).
4 Features of FT232RQ applicable to USB-RS232 Cables

The USB-RS232 cables use FTDI’s FT232RQ USB to serial UART IC device. This section summarises the key features of the FT232RQ which apply to the USB-RS232 USB to serial RS232 converter cables. For further details, and a full features and enhancements description consult the FT232R datasheet. This is available from https://ftdichip.com/.

Internal EEPROM. The internal EEPROM in each cable is used to store USB Vendor ID (VID), Product ID (PID), device serial number, product description string and various other USB configuration descriptors. Each cable is supplied with the internal EEPROM pre-programmed as described in Appendix A - Cable EEPROM Configuration. The internal EEPROM descriptors can be programmed in circuit, over USB without any additional voltage requirement. It can be programmed using the FTDI utility software called MPROG, which can be downloaded from FTDI Utilities on the FTDI website (https://ftdichip.com/).

Additionally, there is a user area of the internal EEPROM available to system designers to allow storing of data (note that this is not modified by FT_PROG).

Lower Operating and Suspend Current. The FT232RQ has a low 15mA operating supply current and a very low USB suspend current of approximately 70μA. (Note that during suspend mode, the current drawn by any customised cable application which uses the USB supply, should not exceed 2.5mA to remain USB compliant).

Low USB Bandwidth Consumption. The USB interface of the FT232RQ, and therefore the USB-RS232 cables has been designed to use as little as possible of the total USB bandwidth available from the USB host controller.

UART Pin Signal Inversion. The sense of each of the UART signals can be individually inverted by configuring options in the internal EEPROM. For example, CTS# (active low) can be changed to CTS (active high), or TXD can be changed to TXD#.

FTDIChip-ID™. The FT232RQ includes the new FTDIChip-ID™ security dongle feature. This FTDIChip-ID™ feature allows a unique number to be burnt into each cable during manufacture. This number cannot be reprogrammed. This number is only readable over USB can be used to form the basis of a security dongle which can be used to protect any customer application software being copied. This allows the possibility of using the USB-RS232 cables as a dongle for software licensing. Further to this, a renewable license scheme can be implemented based on the FTDIChip-ID™ number when encrypted with other information. This encrypted number can be stored in the user area of the FT232RQ internal EEPROM, and can be decrypted, then compared with the protected FTDIChip-ID™ to verify that a license is valid. Web based applications can be used to maintain product licensing this way. An application note, AN232R-02, available from FTDI website (https://ftdichip.com/) describes this feature.

Improved EMI Performance. The USB-RS232 cables are FCC, UKCA and CE certified.

Extended Operating Temperature Range. The USB-RS232 cables are capable of operating over an extended temperature range of -40° to +85° C thus allowing them to be used in automotive or industrial applications.
5 USB-RS232-WE-LLLL-CU-PWR

The USB-RS232-WE cable is un-terminated; it has bare and tinned wires.

The LLLL specifies the length of the cable in cm. The CU specifies the colour of the cable and the colour of the USB connector. The cable can be either Black or transparent. The USB connector can either be black or transparent. For simplicity, the LLLL and CU have been dropped from the following descriptions.

5.1 USB-RS232-WE-PWR Connections and Mechanical Details

The following Figure 5.1 shows the cable signals and the wire colours for the signals on the USB-RS232-WE cable.

![USB-RS232-WE Connections Diagram](image-url)

Figure 5.1 USB-RS232-WE Connections

![USB-RS232-WE Mechanical Details Diagram](image-url)

Figure 5.2 USB-RS232-WE Mechanical Details (dimensions in mm)

![USB-RS232-WE Mechanical Details Diagram](image-url)

Figure 5.3 USB-RS232-WE-1800-BT Mechanical Details (dimensions in mm)
5.2 USB-RS232-WE Cable Signal Descriptions

<table>
<thead>
<tr>
<th>Colour</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>GND</td>
<td>GND</td>
<td>Device ground supply pin.</td>
</tr>
<tr>
<td>Brown</td>
<td>CTS#</td>
<td>Input</td>
<td>Clear to Send Control input / Handshake signal.</td>
</tr>
<tr>
<td>Red</td>
<td>POWER</td>
<td>Output</td>
<td>Power output. Default is GND but can be customised to output +3.3V or +5V. If required, contact FTDI Sales Team (sales1@ftdichip.com)</td>
</tr>
<tr>
<td>Orange</td>
<td>TXD</td>
<td>Output</td>
<td>Transmit Asynchronous Data output.</td>
</tr>
<tr>
<td>Yellow</td>
<td>RXD</td>
<td>Input</td>
<td>Receive Asynchronous Data input.</td>
</tr>
<tr>
<td>Green</td>
<td>RTS#</td>
<td>Output</td>
<td>Request To Send Control Output / Handshake signal.</td>
</tr>
</tbody>
</table>

Table 5.1 USB-RS232-WE Cable Signal Descriptions

5.3 USB-RS232-WE Electrical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC_5V</td>
<td>Output Power Voltage*</td>
<td>4.25</td>
<td>5.0*</td>
<td>5.25</td>
<td>V</td>
<td>*Default is GND. This figure only applies when cable has been customised to output +5V. The range is dependent on the USB port that the USB-RS232-WE is connected to</td>
</tr>
<tr>
<td>VCC_3.3V</td>
<td>Output Power Voltage**</td>
<td>3.2</td>
<td>3.3**</td>
<td>3.4</td>
<td>V</td>
<td>**Default is GND. This figure only applies when cable has been customised to output +3.3V.</td>
</tr>
<tr>
<td>I_0</td>
<td>Output Power Current***</td>
<td>-</td>
<td>75</td>
<td></td>
<td>mA</td>
<td>***Only applies when POWER output is customised to +5V or +3.3V. Must be less than 2.5mA during suspend.</td>
</tr>
</tbody>
</table>

Table 5.2 USB-RS232-WE I/O Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vtrans</td>
<td>Transmitter output</td>
<td>+/- 5</td>
<td>+/- 6.5</td>
<td>+/- 15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>voltage swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrec</td>
<td>Receiver input</td>
<td>-25</td>
<td>+25</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>voltage range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3 USB-RS232-WE I/O Pin Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD HBM</td>
<td>RS-232 Inputs and Outputs</td>
<td>±15 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN61000-4-2ContactDischarge</td>
<td>RS-232 Inputs and Outputs</td>
<td>±8 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN61000-4-2AirGapDischarge</td>
<td>RS-232 Inputs and Outputs</td>
<td>±15 kV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4 USB-RS232-WE ESD Tolerance
6 Cable PCB Circuit Schematic

The circuit schematic for the small internal electronic circuit board, utilising the FTDI FT232RQ, which is encapsulated into the USB connector end of the cable, is shown in Figure 6.1.

Customised versions of the cable are also available. Users interested in customised versions of these cables should contact FTDI sales (sales1@ftdichip.com).

Figure 6.1 Circuit Schematic of PCB Used in the USB to RS232 Serial Converter Cable
7 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited (USA)
7130 SW Fir Loop
Tigard, OR 97223
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 1103, No.666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A - Cable EEPROM Configuration

Each USB-RS232 cable is controlled by the FTDI FT232RQ IC. This FT232RQ device contains an EEPROM which contains the USB configuration descriptors for that device. When the cable is plugged into a PC or a USB reset is performed, the PC will read these descriptors. The default values stored into the internal EEPROM are defined in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Vendor ID (VID)</td>
<td>0403h</td>
<td>FTDI default VID (hex)</td>
</tr>
<tr>
<td>USB Product UD (PID)</td>
<td>6001h</td>
<td>FTDI default PID (hex)</td>
</tr>
<tr>
<td>Serial Number Enabled?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td>See Note</td>
<td>A unique serial number is generated and programmed into the EEPROM during device final test.</td>
</tr>
<tr>
<td>Pull down I/O Pins in USB</td>
<td>Disabled</td>
<td>Enabling this option will make the device pull down on the UART interface lines when the power is shut off (PWREN# is high).</td>
</tr>
<tr>
<td>Suspend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>FTDI</td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>See note</td>
<td>USB-RS232-WE</td>
</tr>
<tr>
<td>Max Bus Power Current</td>
<td>90mA</td>
<td></td>
</tr>
<tr>
<td>Power Source</td>
<td>Bus Powered</td>
<td></td>
</tr>
<tr>
<td>Device Type</td>
<td>FT232R</td>
<td></td>
</tr>
<tr>
<td>USB Version</td>
<td>0200</td>
<td>Returns USB 2.0 device description to the host. Note: The device is a USB 2.0 Full Speed device (12Mb/s) as opposed to a USB 2.0 High Speed device (480Mb/s).</td>
</tr>
<tr>
<td>Remote Wake Up</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>High Current I/Os</td>
<td>Enabled</td>
<td>Enables the high drive level on the UART and CBUS I/O pins.</td>
</tr>
<tr>
<td>Load VCP Driver</td>
<td>Enabled</td>
<td>Makes the device load the VCP driver interface for the device.</td>
</tr>
<tr>
<td>Invert TXD</td>
<td>Disabled</td>
<td>Signal on this pin becomes TXD# if enable.</td>
</tr>
<tr>
<td>Invert RXD</td>
<td>Disabled</td>
<td>Signal on this pin becomes RXD# if enable.</td>
</tr>
<tr>
<td>Invert RTS#</td>
<td>Disabled</td>
<td>Signal on this pin becomes RTS if enable.</td>
</tr>
<tr>
<td>Invert CTS#</td>
<td>Disabled</td>
<td>Signal on this pin becomes CTS if enable.</td>
</tr>
</tbody>
</table>

Table 0.1 Default Internal EEPROM Configuration

The internal EEPROM in the cable can be re-programmed over USB using the utility program FT_PROG. FT_PROG can be downloaded from the https://ftdichip.com/. Version 2.8a or later is required for the FT232RQ chip. Users who do not have their own USB Vendor ID but who would like to use a unique Product ID in their design can apply to FTDI for a free block of unique PIDs. Contact FTDI support for this service.
Appendix B - List of Figures and Tables

List of Figures

Figure 1.1 Using the USB-RS232 Cable ... 2
Figure 5.1 USB-RS232-WE Connections ... 8
Figure 5.2 USB-RS232-WE Mechanical Details (dimensions in mm) 8
Figure 5.3 USB-RS232-WE-1800-BT Mechanical Details (dimensions in mm) 8
Figure 6.1 Circuit Schematic of PCB Used in the USB to RS232 Serial Converter Cable 10

List of Tables

Table 2.1 USB-RS232 Cables Descriptions and Part Numbers 3
Table 5.1 USB-RS232-WE Cable Signal Descriptions .. 9
Table 5.2 USB-RS232-WE I/O Operating Parameters .. 9
Table 5.3 USB-RS232-WE I/O Pin Characteristics .. 9
Table 5.4 USB-RS232-WE ESD Tolerance ... 9
Table 0.1 Default Internal EEPROM Configuration ... 12
Appendix C - Revision History

Document Title: USB to RS232 Serial Converter Range of Cables Datasheet
Document Reference No.: FT_000077
Clearance No.: FTDI# 51
Product Page: Cables
Document Feedback: Send Feedback

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>First Release.</td>
<td>12-09-2008</td>
</tr>
<tr>
<td>Version 1.1</td>
<td>Update to Taiwan address.</td>
<td>01-10-2008</td>
</tr>
<tr>
<td>Version 1.2</td>
<td>Update to UK and TW address. Changed front sheet picture. Added additional part numbers.</td>
<td>11-02-2009</td>
</tr>
<tr>
<td>Version 1.3</td>
<td>Changed TT to BT (Transparent to Black cable).</td>
<td>18-12-2009</td>
</tr>
<tr>
<td>Version 1.4</td>
<td>Added UKCA and updated part number to FT232RQ. Added all part numbers and length tolerance note. Added Figure 5.3. Updated driver support and links.</td>
<td>19-07-2023</td>
</tr>
</tbody>
</table>