UMFT233HPEV-SD Sink Module

Datasheet

Version 1.0

Issue Date: 01-12-2021

Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
Web Site: https://ftdichip.com
Copyright © Future Technology Devices International Limited
Table of Contents

1 Introduction ... 3

1.1 Features ... 3

2 Typical Applications .. 4

2.1 Driver Support ... 4

2.2 USB Bridge Features ... 4

3 Electrical Details ... 5

3.1 Key Features .. 5

3.2 Power .. 6

3.3 GPIO .. 6

3.4 Connectors ... 6

3.5 Schematics ... 7

4 Power Delivery Functional Configuration 12

4.1 Sink .. 12

5 Mechanical Details ... 14

6 Contact Information .. 15

Appendix A – References ... 16

Document References .. 16

Acronyms and Abbreviations ... 16

Appendix B – List of Tables and Figures 17

List of Tables .. 17

List of Figures .. 17

Appendix C – Revision History .. 18
1 Introduction

UMFT233HPEV-SD Sink Module Board is a high-speed USB Type-C to Multipurpose UART/JTAG/SPI/I2C serial interface module with two Type-C™ USB PD ports. It does not support source power capability as what UMFT233HPEV EVB provides.

The module has 71mm x 37mm dimensions, with a pair of Type-C power delivery ports incorporated into it. Both ports serve only as sink port (receiving power). PD Port1 is meant for USB data communication with PC host while PD Port2 can support the 5V, 9V, 12V, 15V and 20V power delivery object (PDO) profiles - as defined in revision 3.0 of the USB Power Delivery specification. These profiles may be configured via an external EEPROM memory, with 7 segment LED displaying the PDO profile to be used.

While port1 offers USB data transmission plus power delivery, port2 only has power delivery capabilities. GPIO pins allow indication of the PDO profiles as configured on EEPROM. They are also used to control the load switch.

1.1 Features

1. Two Type-C™ USB PD ports with,
 a. PD1 is a sink port that supports USB Data transfer which is USB 2.0 complaint.
 b. PD2 which is a sink-only port.
2. Supports bus-powered operation.
3. Indication of PD profile on PD1 and PD2 through 7 segment LED display.
4. Support PD profile indication on either PD ports based on EEPROM or Vbus monitoring by way of pushbutton switch.
5. LED indicators for PWREN#, SUSPEND# signals and System Power.
6. Test points for power supply voltages, core voltages and CC Voltages.
7. External EEPROM for configurable options.
2 Typical Applications

- Rapid USB integration into existing electronic systems
- Prototyping platform for USB interface on new system
- USB Bridge with Type-C/PD3.0 (chargers and devices).
- Up to 60W power application delivery via USB PD and/or Type-C port.
- USB to multi-port JTAG, SPI and I2C interfaces
- USB to multi-port asynchronous serial interfaces

2.1 Driver Support

The FT233HP requires USB drivers (listed below), available free from https://www.ftdichip.com, which are used to make the FT233HP appear as a virtual COM port (VCP). This allows the user to communicate with the USB interface via a standard PC serial emulation port (for example TTY). Another FTDI USB driver, the D2XX driver, can also be used with application software to directly access the FT233HP through a DLL.

<table>
<thead>
<tr>
<th>Royalty free VIRTUAL COM PORT (VCP) DRIVERS for...</th>
<th>Royalty free D2XX Direct Drivers (USB Drivers + DLL S/W Interface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Windows 11 32,64-bit</td>
<td>• Windows 11 32,64-bit</td>
</tr>
<tr>
<td>• Windows 10 32,64-bit</td>
<td>• Windows 10 32,64-bit</td>
</tr>
<tr>
<td>• Windows 8/8.1 32,64-bit</td>
<td>• Windows 8/8.1 32,64-bit</td>
</tr>
<tr>
<td>• Windows 7 32,64-bit</td>
<td>• Windows 7 32,64-bit</td>
</tr>
<tr>
<td>• Windows Server 2008 and server 2012 R2</td>
<td>• Windows Server 2008 and server 2012 R2</td>
</tr>
<tr>
<td>• Mac OS</td>
<td>• Mac OS</td>
</tr>
<tr>
<td>• Linux 2.4 and greater</td>
<td>• Linux 2.4 and greater</td>
</tr>
<tr>
<td></td>
<td>• Android(J2xx)</td>
</tr>
</tbody>
</table>

For driver installation, please refer to the installation guides on our website: https://ftdichip.com/document/installation-guides/

2.2 USB Bridge Features

For information on USB Bridge features, please refer to [FT233HP Datasheet](https://ftdichip.com/document/installation-guides/).
3 Electrical Details

The UMFT233HPEV-SD Sink Module Board is a 71mm by 37mm 4-layered printed circuit board. The key features are labelled in Figure 2 and Figure 3 and are detailed in Section 3.1.

Figure 2 - UMFT233HPEV-SD Sink Module Board - Top View

Figure 3 - UMFT233HPEV-SD Sink Module Board - Bottom View

3.1 Key Features

1. 2 PD USB Type-C ports.
 a. PD Port 1 for sink and USB data transfer.
 b. PD Port 2 for sink only
2. LEDs indication for the USB and Power Source.
4. 7 segment LED for displaying PD profiles of either PD1 Port or PD2 Port selectable by pushbutton switch
5. DC-DC converters for FT233HPQ and other circuits
3.2 Power

a) The UMFT233HPEV-SD Sink Module board provides the following power sources: 3.46V for FT233HPQ.
b) 3.3V for the MCU and decoding logic for 7 segment LED
c) 2.2V for the 7 segment LED.

The reason why 3.46V is needed for FT233HPQ is due to the addition of schottky diode between VCC_PD/PD1_Vconn and VCC33 to prevent CC leakage during initial attach when the chip is not yet fully powered up. Refer to section 4.15.5 of FT233HPQ datasheet for more detail.

The power source for 3.46V is derived from bus power via PD port 1 or port 2 through DC-DC converter (U3). It provides power to the following:

a) FT233HPQ
b) MCU and decoding logic for the 7 segment LED. Schottky diode (D19) is added to lower the power to 3.3V.
c) DC-DC converter (U7) that is derived from 3.3V to provide 2.2V power to the 7 segment LED.

3.3 GPIO

The GPIOs from FT233HPQ are used to control the load switch as well as setting the PD power profile used during PD negotiation between the charger and the charging device. These profiles can then be decoded by the onboard MCU and displayed on the 7 segment LED.

3.4 Connectors

Connectors CN3 and CN4 for functional interface are detailed in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>Connector Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3-1</td>
<td>ADBUS0</td>
<td>FT233HPQ ADBUS0 pin</td>
</tr>
<tr>
<td>CN3-2</td>
<td>ADBUS1</td>
<td>FT233HPQ ADBUS1 pin</td>
</tr>
<tr>
<td>CN3-3</td>
<td>ADBUS2</td>
<td>FT233HPQ ADBUS2 pin</td>
</tr>
<tr>
<td>CN3-4</td>
<td>ADBUS3</td>
<td>FT233HPQ ADBUS3 pin</td>
</tr>
<tr>
<td>CN3-5</td>
<td>ADBUS4</td>
<td>FT233HPQ ADBUS4 pin</td>
</tr>
<tr>
<td>CN3-6</td>
<td>ADBUS5</td>
<td>FT233HPQ ADBUS5 pin</td>
</tr>
<tr>
<td>CN3-7</td>
<td>ADBUS6</td>
<td>FT233HPQ ADBUS6 pin</td>
</tr>
<tr>
<td>CN3-8</td>
<td>ADBUS7</td>
<td>FT233HPQ ADBUS7 pin</td>
</tr>
<tr>
<td>CN3-9</td>
<td>GPIO0</td>
<td>FT233HPQ GPIO0 pin</td>
</tr>
<tr>
<td>CN3-10</td>
<td>GPIO1</td>
<td>FT233HPQ GPIO1 pin</td>
</tr>
<tr>
<td>CN3-11</td>
<td>GPIO2</td>
<td>FT233HPQ GPIO2 pin</td>
</tr>
<tr>
<td>CN3-12</td>
<td>GPIO3</td>
<td>FT233HPQ GPIO3 pin</td>
</tr>
<tr>
<td>CN3-13</td>
<td>GPIO4</td>
<td>FT233HPQ GPIO4 pin</td>
</tr>
<tr>
<td>CN3-14</td>
<td>GPIO5</td>
<td>FT233HPQ GPIO5 pin</td>
</tr>
<tr>
<td>CN3-15</td>
<td>GPIO6</td>
<td>FT233HPQ GPIO6 pin</td>
</tr>
<tr>
<td>CN3-16</td>
<td>GPIO7</td>
<td>FT233HPQ GPIO7 pin</td>
</tr>
<tr>
<td>CN3-17</td>
<td>PD2_OUT</td>
<td>Output form PD2 Q2 load switch</td>
</tr>
<tr>
<td>CN3-18</td>
<td>PD2_OUT</td>
<td>Output from PD2 Q2 load switch</td>
</tr>
<tr>
<td>CN3-19</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>CN3-20</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 1 - Connector Pin Details of CN3
3.5 Schematics

Figure 4 to Figure 9 shows the various elements of the schematics.
Figure 4 - DC to DC Converter for 3.46V from PD1 or PD2 Vbus and 2.2V from 3.3V

Figure 5 – FT233HPQ IC
Figure 6 – LED Driver Circuit for Power and USB activity

Figure 7 – MCU and Decoding Logic for PD Profile Display
Figure 8 – PD1/PD2 Ports and Load Switches
Figure 9 – Interface and Connectors
4 Power Delivery Functional Configuration

4.1 Sink

Sink is a feature where the PD2 or PD1 port can be configured as sink mode when attached to a PD charger or other PD devices to provide power to the modules connected to the board. Figure 10 illustrates the use case of sink configuration in UMFT233HPEV-SD.

Figure 10 shows PD1 port acting as USB data port to PC host, while PD2 sink power when connected to PD charger. The PD2 sink power profiles are configurable in EEPROM. The load switch when turned on after PD negotiation will route the sink power from PD2 to CN3 (pin17, 18) to power the external module. The pushbutton switch SW2 acts as a display mode selection that enables the onboard MCU to drive the 7 segment LED to provide indication of PD profiles from either PD1 or PD2. There are in total 4 PD display modes whereby each mode is set by pressing the pushbutton switch as shown below in Table 3.

<table>
<thead>
<tr>
<th>PD Display Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MCU read PD2 voltage level through PD2_Vbus monitoring</td>
</tr>
<tr>
<td>2</td>
<td>MCU read PD1 voltage level through PD1_Vbus monitoring</td>
</tr>
<tr>
<td>3</td>
<td>MCU read PD2 voltage based on GPIO profile in the EEPROM</td>
</tr>
<tr>
<td>4</td>
<td>MCU read PD1 voltage based on GPIO profile in the EEPROM</td>
</tr>
</tbody>
</table>

Table 3 - Description of the PD Display Mode

Pressing of SW2 will enable the MCU to obtain the negotiated PD profile either from monitoring of Vbus level or GPIO profiles in the EEPROM.

Table 4 shows the expected PD profile on the 7 segment LED based on the following states of the 2 PD ports when SW2 is pressed.
<table>
<thead>
<tr>
<th>State of SW2</th>
<th>PD1</th>
<th>PD2</th>
<th>Profile Displayed on LED1 (7 segment LED)</th>
<th>PD Display Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button not pressed</td>
<td>Connect to PC host</td>
<td>Not connected</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Connect to PC host</td>
<td>Not connected</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Connect to PC host</td>
<td>Connect to PD charger</td>
<td>Display the negotiated PD2 profile</td>
<td>3</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Connect to PC host</td>
<td>Connect to PD charger</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Connect to PC host</td>
<td>Connect to PD charger</td>
<td>Display the negotiated PD2 profile</td>
<td>1</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Not connected</td>
<td>Connect to PD charger</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Not connected</td>
<td>Connect to PD charger</td>
<td>Display the negotiated PD2 profile</td>
<td>3</td>
</tr>
<tr>
<td>Button pressed</td>
<td>Not connected</td>
<td>Connected to PD charger</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4 – Expected PD profile displayed on 7 segment LED when push button SW2 is pressed
5 Mechanical Details

Figure 11 - UMFT233HPEV-SD Sink Module Board – Mechanical Diagram – Top View

Figure 12 - UMFT233HPEV-SD Sink Module Board – Mechanical Diagram – Bottom View
6 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited (USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-mail (Sales) us.sales@ftdichip.com
E-mail (Support) us.support@ftdichip.com
E-mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A – References

Document References

AN_448 FT4233HP_FT2233HP_FT233HP_Configuration_Guide
AN_449 FT4233HP_FT2233HP_FT233HP_FT4232HP_FT2232HP_FT232HP_DCDC_Power_Delivery_Application_Note
FT233HP Datasheet

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>PD</td>
<td>Power Delivery</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USB-IF</td>
<td>USB Implementer Forum</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables and Figures

List of Tables
Table 1 - Connector Pin Details of CN3... 6
Table 2 - Connector Pin Details of CN6... 7
Table 3 - Description of the PD Display Mode... 12
Table 4 – Expected PD profile displayed on 7 segment LED when push button SW2 is pressed.... 13

List of Figures
Figure 1 - UMFT233HPEV-SD Sink Module .. 3
Figure 2 - UMFT233HPEV-SD Sink Module Board - Top View............................ 5
Figure 3 - UMFT233HPEV-SD Sink Module Board - Bottom View....................... 5
Figure 4 - DC to DC Converter for 3.46V from PD1 or PD2 Vbus and 2.2V from 3.3V 8
Figure 5 - FT233HPQ IC... 8
Figure 6 – LED Driver Circuit for Power and USB activity 9
Figure 7 – MCU and Decoding Logic for PD Profile Display 9
Figure 8 – PD1/PD2 Ports and Load Switches.. 10
Figure 9 - Interface and Connectors.. 11
Figure 10 - Sink Block Diagram (PD1 port as USB to Host PC, PD2 Port sink power into the module from charger).. 12
Figure 11 - UMFT233HPEV-SD Sink Module Board – Mechanical Diagram – Top View......... 14
Figure 12 - UMFT233HPEV-SD Sink Module Board – Mechanical Diagram – Bottom View........ 14
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>01-12-2021</td>
</tr>
</tbody>
</table>