Table of Contents

1 Introduction ... 3
 1.1 Features .. 3

2 Typical Applications .. 4
 2.1 Driver Support ... 4
 2.2 USB Bridge Features ... 4

3 Electrical Details .. 5
 3.1 Key Features ... 6
 3.2 Power ... 6
 3.3 GPIO ... 6
 3.4 Connectors .. 6
 3.5 Schematics ... 7

4 Power Delivery Functional Configuration 11
 4.1 Sink ... 11

5 Mechanical Details .. 13

6 Contact Information ... 14

Appendix A – References .. 15
 Document References .. 15
 Acronyms and Abbreviations .. 15

Appendix B – List of Tables and Figures 16
 List of Tables .. 16
 List of Figures ... 16

Appendix C – Revision History .. 17
1 Introduction

UMFT232HPEV-S Sink Module Board is a high speed USB Type-C to Multipurpose UART/JTAG/SPI/I2C serial interface module with single Type-C™ USB PD port.

The module has 47mm x 32mm dimensions, with single Type-C power delivery port incorporated into it. The port serves only as a sink port. EEPROM is not mounted in this module, As such the port supports the following configuration:

- 5V power delivery object (PDO) profiles - as defined in revision 3.0 of the USB Power Delivery specification when connected to PD chargers.
- Offers USB data transmission with default USB power capability when connected to non PD PC host.

GPIO pins are used to provide indication via LEDs whether module is connected to PD charger or USB2.0 host as well as to control the load switch.

1.1 Features

1. Single Type-C™ USB PD sink only ports that support USB data communication which is USB 2.0 compliant
2. Supports bus-powered operation.
3. LED indicators for PWREN#, SUSPEND# signals (optional), System Power, 5V 3A profile and USB2.0 Vbus
4. Test points for core and CC voltages.
2 Typical Applications

- Rapid USB integration into existing electronic systems
- Prototyping platform for USB interface on new system
- USB Bridge with Type-C/PD3.0 (chargers and devices).
- Up to 15W power application delivery via USB PD and/or Type-C port.
- USB to multi-port JTAG, SPI and I2C interfaces
- USB to multi-port asynchronous serial interfaces

2.1 Driver Support

The FT232HP requires USB drivers (listed below), available free from https://www.ftdichip.com, which are used to make the FT232HP appear as a virtual COM port (VCP). This allows the user to communicate with the USB interface via a standard PC serial emulation port (for example TTY). Another FTDI USB driver, the D2XX driver, can also be used with application software to directly access the FT232HP through a DLL.

Royalty free VIRTUAL COM PORT (VCP) DRIVERS for...
- Windows 11 (Desktop 32,64-bit & Universal 64-bit)
- Windows 10 32,64-bit
- Windows 8/8.1 32,64-bit
- Windows 7 32,64-bit
- Windows Server 2008 and server 2012 R2
- Mac OS
- Linux 2.4 and greater

Royalty free D2XX Direct Drivers (USB Drivers + DLL S/W Interface)
- Windows 11 (Desktop 32,64-bit & Universal 64-bit)
- Windows 10 32,64-bit
- Windows 8/8.1 32,64-bit
- Windows 7 32,64-bit
- Windows Server 2008 and server 2012 R2
- Mac OS
- Linux 2.4 and greater
- Android(J2xx)

For driver installation, please refer to the installation guides on our website: https://ftdichip.com/document/installation-guides/

2.2 USB Bridge Features

For information on USB Bridge features, please refer to FT233HP Datasheet.
3 Electrical Details

The UMFT232HPEV-S Sink Module Board is a 47mm by 32mm 4-layered printed circuit board.

The key features are labelled in Figure 2 and Figure 3 and are detailed in Section 3.1.
3.1 Key Features

1. Single PD USB Type-C sink only ports.
2. LEDs indication for the USB, Power Source and PDO profiles
3. Connector for functional interface
4. DC-DC converters for FT232HPQ and other circuits

3.2 Power

The UMFT23HPEV-S Sink Module board provides power source that is 3.46V for FT232HPQ and most other circuits on the board. The reason why 3.46V is needed for FT232HPQ is due to the addition of schottky diode between VCC_PD/PD1_Vconn and VCC33 to prevent CC leakage during initial attach when the chip is not yet fully powered up.

Refer to section 4.15.5 of FT232HPQ datasheet for more detail. The power source is derived from bus power via PD1 port.

3.3 GPIO

The GPIOs from FT232HPQ are used to control the load switch as well as setting the PD power profile used during PD negotiation between the charger and the charging device.

3.4 Connectors

Connectors CN3, CN4 and for functional interface are detailed in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>Connector Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3-1</td>
<td>ADBUS0</td>
<td>FT232HPQ ADBUS0 pin</td>
</tr>
<tr>
<td>CN3-2</td>
<td>ADBUS1</td>
<td>FT232HPQ ADBUS1 pin</td>
</tr>
<tr>
<td>CN3-3</td>
<td>ADBUS2</td>
<td>FT232HPQ ADBUS2 pin</td>
</tr>
<tr>
<td>CN3-4</td>
<td>ADBUS3</td>
<td>FT232HPQ ADBUS3 pin</td>
</tr>
<tr>
<td>CN3-5</td>
<td>ADBUS4</td>
<td>FT232HPQ ADBUS4 pin</td>
</tr>
<tr>
<td>CN3-6</td>
<td>ADBUS5</td>
<td>FT232HPQ ADBUS5 pin</td>
</tr>
<tr>
<td>CN3-7</td>
<td>ADBUS6</td>
<td>FT232HPQ ADBUS6 pin</td>
</tr>
<tr>
<td>CN3-8</td>
<td>ADBUS7</td>
<td>FT232HPQ ADBUS7 pin</td>
</tr>
<tr>
<td>CN3-9</td>
<td>GPIO0</td>
<td>FT232HPQ GPIO0 pin</td>
</tr>
<tr>
<td>CN3-10</td>
<td>GPIO1</td>
<td>FT232HPQ GPIO1 pin</td>
</tr>
<tr>
<td>CN3-11</td>
<td>GPIO2</td>
<td>FT232HPQ GPIO2 pin</td>
</tr>
<tr>
<td>CN3-12</td>
<td>GPIO3</td>
<td>FT232HPQ GPIO3 pin</td>
</tr>
<tr>
<td>CN3-13</td>
<td>CN3-13</td>
<td>To provide 3.46V to this pin, short the solder jumper JP1</td>
</tr>
<tr>
<td>CN3-14</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>CN3-15</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 1 - Connector Pin Details of CN3

<table>
<thead>
<tr>
<th>Connector Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN4-1</td>
<td>ACBUS0</td>
<td>FT232HPQ ACBUS0 pin</td>
</tr>
<tr>
<td>CN4-2</td>
<td>ACBUS1</td>
<td>FT232HPQ ACBUS1 pin</td>
</tr>
<tr>
<td>CN4-3</td>
<td>ACBUS2</td>
<td>FT232HPQ ACBUS2 pin</td>
</tr>
<tr>
<td>CN4-4</td>
<td>ACBUS3</td>
<td>FT232HPQ ACBUS3 pin</td>
</tr>
<tr>
<td>CN4-5</td>
<td>ACBUS4</td>
<td>FT232HPQ ACBUS4 pin</td>
</tr>
<tr>
<td>CN4-6</td>
<td>ACBUS5</td>
<td>FT232HPQ ACBUS5 pin</td>
</tr>
<tr>
<td>CN4-7</td>
<td>ACBUS6</td>
<td>FT232HPQ ACBUS6 pin</td>
</tr>
<tr>
<td>CN4-8</td>
<td>ACBUS7</td>
<td>FT232HPQ ACBUS7 pin</td>
</tr>
<tr>
<td>CN4-9</td>
<td>ACBUS8</td>
<td>FT232HPQ ACBUS8 pin</td>
</tr>
<tr>
<td>CN4-10</td>
<td>ACBUS9</td>
<td>FT232HPQ ACBUS9</td>
</tr>
<tr>
<td>CN4-11</td>
<td>RESET#</td>
<td>FT232HPQ RESET# pin</td>
</tr>
<tr>
<td>CN4-12</td>
<td>PD_OUT</td>
<td>Output from PD1 Q1 load switch</td>
</tr>
<tr>
<td>CN4-13</td>
<td>PD_OUT</td>
<td>Output from PD1 Q1 load switch</td>
</tr>
<tr>
<td>CN4-14</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>CN4-15</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 2 - Connector Pin Details of CN4
3.5 Schematics

Figure 4 to Figure 8 show the various elements of the schematics.

Figure 4 – DC to DC Converter for 3.46V

Figure 5 – FT232HPQ
Figure 6 – PD Profile Decoding logic and LED driver Circuit for power, GPIO and USB activity
Figure 7 – PD1 Port and Load Switch
Figure 8 – Interface and Connectors
4 Power Delivery Functional Configuration

4.1 Sink

Sink is feature where PD can be configured as sink mode when attached to a PD charger or other PD devices to provide power to the modules connected to the board. Figure 9 and Figure 10 shows two user scenarios in UMFT232HPEV-S.

![Sink Block Diagram](image)

Figure 9 – Sink Block Diagram ("Module PD1 Port" sink power from "Charger USB-A")
Sink Configuration

Figure 9 shows the first scenario where “Laptop/Charger USB A” connects to “Module USB C”. In this case, the decoding logic will drive USB2_VBus LED on based on the state of the GPIO2 and GPIO3 signifying that Vbus is at default 500mA. Also load switch is turned on by the assertion of GPIO2 to route the 5V to the CN4 pin12, 13 where it can be used to power the external module.

Figure 10 shows the 2nd scenario where “Laptop/Charger USB C” connects to “Module USB C”. In this case, the decoding logic will drive PD_VBus LED on based on the state of GPIO2 and GPIO3 signifying Vbus is at 5V, 3A. Also load switch is turned on by the assertion of GPIO2 to route the 5V to the CN4 pin12, 13 where it can be used to power the external module.

Table 3 shows the state of the GPIOs and LEDs based on the above two scenario.

<table>
<thead>
<tr>
<th>GPIO2</th>
<th>GPIO3</th>
<th>D11 LED (PD_VBUS)</th>
<th>D12 LED (USB2_VBUS)</th>
<th>PD Port Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>Off</td>
<td>On</td>
<td>To non PD PC Host</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>On</td>
<td>Off</td>
<td>To PD PC host or PD charger</td>
</tr>
</tbody>
</table>

Table 3 - State of the GPIOs and LEDs
5 Mechanical Details

Figure 11 – UMFT232HPEV-S Sink Module – Mechanical Diagram – Top View

Figure 12 – UMFT232HPEV-S Sink Module – Mechanical Diagram – Bottom View
6 Contact Information

Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA
Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-mail (Sales) us.sales@ftdichip.com
E-mail (Support) us.support@ftdichip.com
E-mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan
Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China
Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A – References

Document References

AN_448 FT4233HP_FT2233HP_FT233HP_Configuration_Guide

AN_449 FT4233HP_FT2233HP_FT233HP_FT4232HP_FT2232HP_FT232HP_DCDC_Power_Delivery_Application_Note

FT233HP Datasheet

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>PD</td>
<td>Power Delivery</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USB-IF</td>
<td>USB Implementer Forum</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables and Figures

List of Tables
Table 1 - Connector Pin Details of CN3... 6
Table 2 - Connector Pin Details of CN4... 6
Table 3 - State of the GPIOs and LEDs... 12

List of Figures
Figure 1 - UMFT232HPEV-S Sink Module .. 3
Figure 2 - UMFT232HPEV-S Sink Module – Top Board View................................ 5
Figure 3 - UMFT232HPEV-S Sink Module – Bottom Board View......................... 5
Figure 4 – DC to DC Converter for 3.46V ... 7
Figure 5 – FT232HPQ.. 7
Figure 6 – PD Profile Decoding logic and LED driver Circuit for power, GPIO and USB activity 8
Figure 7 – PD1 Port and Load Switch ... 9
Figure 8 – Interface and Connectors.. 10
Figure 9 – Sink Block Diagram ("Module PD1 Port“ sink power from "Charger USB-A") 11
Figure 10 – Sink Block Diagram ("Module PD1 Port“ sink power from "Charger USB-C") 12
Figure 11 – UMFT232HPEV-S Sink Module – Mechanical Diagram – Top View............. 13
Figure 12 – UMFT232HPEV-S Sink Module – Mechanical Diagram – Bottom View........... 13
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>01-12-2021</td>
</tr>
</tbody>
</table>

Document Title: UMFT232HPEV-S Sink Module Datasheet
Document Reference No.: FT_001516
Clearance No.: FTDI#565
Document Feedback: Send Feedback