The intention of this errata technical note is to give a detailed description of known functional or electrical issues with the FTDI FT231X devices. The current revision of the FT231X is revision D, released November 2012.
TABLE OF CONTENTS

1 FT231X Revision .. 2

2 Errata History Table – Functional Problems ... 3
 2.1 Errata History Table – Programming Issues ... 3
 2.2 Errata History Table – Electrical and Timming Specification Deviations.3

3 Functional Problems of FT231X ... 4
 3.1 Revision A... 4
 3.1.1 USB Data Transfer .. 4
 3.1.2 USB 3.0 Hosts .. 5
 3.2 Revision B... 6
 3.2.1 USB Data Transfer .. 6
 3.2.2 USB 3.0 Hosts .. 7
 3.3 Revision C... 8
 3.3.1 USB Data Transfer .. 8
 3.3.2 USB 3.0 Hosts .. 9
 3.4 Revision D.. 9

4 Programming Issues of FT231X ... 10
 4.1 Revision A.. 10
 4.1.1 Default VCP Setting is Disabled .. 10
 4.2 Revision B.. 11
 4.2.1 Default VCP Setting is Disabled .. 11
 4.3 Revision C.. 11
 4.4 Revision D.. 11

5 Electrical and Timing specification deviations of FT231X ... 12
 5.1 Revision A.. 12
 5.2 Revision B.. 12
 5.2.1 Internal 3V3 Regulator ... 12
 5.3 Revision C.. 12
 5.4 Revision D.. 12

6 FT231X Package Markings ... 13

7 Contact Information ... 14

Appendix C – Revision History ... 15
1 FT231X Revision

FT231X part numbers are listed in Table 1. The letter at the end of date code identifies the device revision.

The current revision of the FT231X is revision D, released November 2012. At the time of releasing this Technical Note there are no known issues with this silicon revision.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>20 pin QFN</td>
</tr>
<tr>
<td>FT231XS</td>
<td>20 pin SSOP</td>
</tr>
</tbody>
</table>

Table 1 FT231X Part Numbers

This errata technical note covers the revisions of FT231X listed in Table 2.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>First device revision. Never sold publicly.</td>
</tr>
<tr>
<td>B</td>
<td>Second device revision. Launched 28 February 2012</td>
</tr>
<tr>
<td>C</td>
<td>Third device revision, Launched 11th June 2012</td>
</tr>
<tr>
<td>D</td>
<td>Forth device version. Released 6th November 2012</td>
</tr>
</tbody>
</table>

Table 2 FT231X Revisions
2 Errata History Table – Functional Problems

<table>
<thead>
<tr>
<th>Functional Problem</th>
<th>Short description</th>
<th>Errata occurs in device revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Data Transfer</td>
<td>Transfer of data over USB stops unexpectedly</td>
<td>A, B and C</td>
</tr>
<tr>
<td>USB 3.0 Hosts</td>
<td>USB 3.0 Host occasional interoperability</td>
<td>A, B and C</td>
</tr>
</tbody>
</table>

Table 3 Functional Errata

2.1 Errata History Table – Programming Issues

<table>
<thead>
<tr>
<th>Functional Problem</th>
<th>Short description</th>
<th>Errata occurs in device revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT230X</td>
<td>Default VCP setting is disabled</td>
<td>A, B</td>
</tr>
</tbody>
</table>

Table 4 Programming Errata

2.2 Errata History Table – Electrical and Timming Specification Deviations.

<table>
<thead>
<tr>
<th>Deviations</th>
<th>Short description</th>
<th>Errata occurs in device revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault with internal 3V3 regulator.</td>
<td>Device VCC is designed to operate between 3V3 and 5V however with this errata the supply should not be set below 4.3V for correct operation.</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 5 Electrical and Timing Errata
3 Functional Problems of FT231X

3.1 Revision A

3.1.1 USB Data Transfer

Introduction:
An issue has been identified where the transfer of data over USB stops unexpectedly.

Problem:
The device is put into suspend mode during a transfer of certain data patterns most notable with binary zeros. This will immediately halt the data transfer and the device will need to be re enumerated to recover.

NB. It is the presence of this data pattern on the USB bus regardless of whether the data is intended for the FT231X or other devices (e.g. a broadcast) on the bus that forces the suspend state.

Workaround:
This issue can be avoided by utilising the keep awake function of the chip. This will disable the USB suspend function of the chip and is therefore an intermediate workaround until revision D silicon is released with a permanent fix.

NB. With the workaround the chip will never enter lower powered suspend. However the keep awake current will be approximately 3mA.

To enable the keep awake function in the EEPROM, one of the CBUS pins needs to be configured as Keep-Awake#. This pin then needs to be tied to ground on the PCB. The FT_Prog utility can be used to configure the CBUS pin.

Package specific:
The affected packages are listed in Table 6.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 6
3.1.2 USB 3.0 Hosts

Introduction:
An issue has been identified where the FT231X will not enumerate when connected to certain USB 3.0 Hosts. So far FTDI have identified **ONE** such host.

Problem:
Certain USB 3.0 Hosts exhibit reduced reset recovery times after a USB reset, which can at times be faster or close to the USB 2.0 specification limit. The USB 2.0 specification states a USB reset recovery time of 10ms and in general almost all hosts allocate a much longer period than this. The FT231X device may not enumerate if the reset recovery time is reduced.

This issue has been seen on one USB 3.0 Host controller and has not been seen on a USB 2.0 Host controller or other USB 3.0 Host controllers.

Workaround:
Reconnect the device to a USB 2.0 host. This issue has been seen only on one particular USB 3.0 Host controllers.

Package specific:
The effected packages are listed in Table 7.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 7
3.2 Revision B

3.2.1 USB Data Transfer

Introduction:
An issue has been identified where the transfer of data over USB stops unexpectedly.

Problem:
The device is put into suspend mode during a transfer of certain data patterns most notable with binary zeros. This will immediately halt the data transfer and the device will need to be re-enumerated to recover.

NB. It is the presence of this data pattern on the USB bus regardless of whether the data is intended for the FT231X or other devices (e.g. a broadcast) on the bus that forces the suspend state.

Workaround:
This issue can be avoided by utilising the keep awake function of the chip. This will disable the USB suspend function of the chip and is therefore an intermediate workaround until revision D silicon is released with a permanent fix.

NB. With the workaround the chip will never enter lower powered suspend. However the keep awake current will be approximately 3mA.

To enable the keep awake function in the EEPROM, one of the CBUS pins needs to be configured as Keep-Awake#. This pin then needs to be tied to ground on the PCB. The FT_Prog utility can be used to configure the CBUS pin.

Package specific:
The effected packages are listed in Table 8.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 8
3.2.2 USB 3.0 Hosts

Introduction:

An issue has been identified where the FT231X will not enumerate when connected to certain USB 3.0 Hosts. So far FTDI have identified ONE such host.

Problem:

Certain USB 3.0 Hosts exhibit reduced reset recovery times after a USB reset, which can at times be faster or close to the USB 2.0 specification limit. The USB 2.0 specification states a USB reset recovery time of 10ms and in general almost all hosts allocate a much longer period than this. The FT231X device may not enumerate if the reset recovery time is reduced.

This issue has been seen on one USB 3.0 Host controller and has not been seen on a USB 2.0 Host controller or other USB 3.0 Host controllers.

Workaround:

Reconnect the device to a USB 2.0 host. This issue has been seen only on one particular USB 3.0 Host controllers.

Package specific:

The effected packages are listed in Table 9.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 9
3.3 Revision C

3.3.1 USB Data Transfer

Introduction:
An issue has been identified where the transfer of data over USB stops unexpectedly.

Problem:
The device is put into suspend mode during a transfer of certain data patterns most notable with binary zeros. This will immediately halt the data transfer and the device will need to be re.enumerated to recover.

NB. It is the presence of this data pattern on the USB bus regardless of whether the data is intended for the FT231X or other devices (e.g. a broadcast) on the bus that forces the suspend state.

Workaround:
This issue can be avoided by utilising the keep awake function of the chip. This will disable the USB suspend function of the chip and is therefore an intermediate workaround until revision D silicon is released with a permanent fix.

NB. With the workaround the chip will never enter lower powered suspend. However the keep awake current will be approximately 3mA.

To enable the keep awake function in the EEPROM, one of the CBUS pins needs to be configured as Keep-Awake#. This pin then needs to be tied to ground on the PCB. The FT_Prog utility can be used to configure the CBUS pin.

Package specific:
The effected packages are listed in Table 10.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 10
3.3.2 USB 3.0 Hosts

Introduction:

An issue has been identified where the FT231X will not enumerate when connected to certain USB 3.0 Hosts. So far FTDI have identified **ONE** such host.

Problem:

Certain USB 3.0 Hosts exhibit reduced reset recovery times after a USB reset, which can at times be faster or close to the USB 2.0 specification limit. The USB 2.0 specification states a USB reset recovery time of 10ms and in general almost all hosts allocate a much longer period than this. The FT231X device may not enumerate if the reset recovery time is reduced.

This issue has been seen on one USB 3.0 Host controller and has not been seen on a USB 2.0 Host controller or other USB 3.0 Host controllers.

Workaround:

Reconnect the device to a USB 2.0 host. This issue has been seen only on one particular USB 3.0 Host controllers.

Package specific:

The effected packages are listed in Table 11.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 11

3.4 Revision D

No known issues at revision D.
4 Programming Issues of FT231X

4.1 Revision A

4.1.1 Default VCP Setting is Disabled

Introduction:
The FT230X stores several configuration values in the MTP. The VCP driver is intended to be enabled with the FT230X.

Problem:
An incorrect value for the VCP driver was programmed into the MTP on some production runs.

Workaround:
Use FT_Prog or a custom D2XX program to change the MTP setting to enable loading of the VCP driver.

This setting has been corrected in all Rev C devices.

Package specific:
The effected packages are listed in Table 12.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 12
4.2 Revision B

4.2.1 Default VCP Setting is Disabled

Introduction:
The FT230X stores several configuration values in the MTP. The VCP driver is intended to be enabled with the FT230X.

Problem:
An incorrect value for the VCP driver was programmed into the MTP on some production runs.

Workaround:
Use FT_Prog or a custom D2XX program to change the MTP setting to enable loading of the VCP driver.
This setting has been corrected in all Rev C devices.

Package specific:
The effected packages are listed in Table 13.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 13

4.3 Revision C
No known programming issues at Revision C.

4.4 Revision D
No known issues at revision D.
5 Electrical and Timing specification deviations of FT231X

5.1 Revision A
No known issues at revision A

5.2 Revision B

5.2.1 Internal 3V3 Regulator

Introduction:
The FT231X uses an internal regulator to generate 3V3 from a 5V source (VCC). The source should be variable from 3V3 to 5V.

Problem:
The VCC supply to the regulator must not drop below 4.3V for the correct 3V3 regulated output to be produced.

Workaround:
VCC must not be supplied below 4.3V.

Package specific:
The affected packages are listed in Table 14.

<table>
<thead>
<tr>
<th>Package</th>
<th>Applicable (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT231XQ</td>
<td>Y</td>
</tr>
<tr>
<td>FT231XS</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 14

5.3 Revision C
No known programming issues at Revision C.

5.4 Revision D
No known issues at revision D.
6 FT231X Package Markings

FT231X is available in a RoHS Compliant package, 20 pin QFN and 16 pin SSOP. An example of the markings on the package is shown in Figure 5.1.

The date code format is \texttt{YYWW} where \texttt{WW} = 2 digit week number, \texttt{YY} = 2 digit year number. This is followed by the revision number.

The code \texttt{XXXXXXXXXXXX} is the manufacturing LOT code.
7 Contact Information

Head Office – Glasgow, UK

Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Oregon, USA

7130 Fir Loop,
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan

2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China

Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First Release</td>
<td>09/03/2012</td>
</tr>
<tr>
<td>1.1</td>
<td>Added VCP MTP setting corrections, Updated China address, Added Rev C release</td>
<td>11/06/2012</td>
</tr>
<tr>
<td>1.2</td>
<td>Added USB data transfer issue and corrected programming issues</td>
<td>12/07/2012</td>
</tr>
<tr>
<td>1.3</td>
<td>Added USB 3.0 hosts and note to Problem section of USB data transfer</td>
<td>14/08/2012</td>
</tr>
<tr>
<td>1.4</td>
<td>Added revision D – no known issues, updated contact information</td>
<td>10/06/2013</td>
</tr>
</tbody>
</table>