
Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user

agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits or expense
resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com
Copyright © Future Technology Devices International Limited

Application Note

AN_355

FT232H MPSSE Example - I2C Master

with Visual Basic

Version 1.1

Issue Date: 2020-01-10

This application note provides an example of using the MPSSE feature of the
FT232H device as an I2C Master with a Visual Basic .NET project. It can be used
with the FTDI FT232H modules (such as UM232H, UM232H-B, C232HM) in
addition to custom boards containing the FT232H IC.

http://ftdichip.com/

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 2
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Table of Contents

1 Introduction .. 4

2 Hardware .. 5

2.1 Hardware Description ... 5

2.2 Prototype Hardware .. 7

2.3 Schematic ... 8

3 Software ... 9

3.1 Sample code package .. 9

4 Current Meter Application Code 10

4.1 Form1_Load .. 10

4.2 Button_Init_Click .. 10

4.3 Button_Start_Click .. 11

4.4 Button_Stop_Click .. 12

4.5 PictureBox2_Paint .. 13

4.6 Button_Save_Click .. 14

4.7 Button_Exit_Click ... 14

5 I2C Functions ... 15

5.1 MPSSE Commands ... 15

5.2 Example Usage of the I2C Functions 16

5.3 Function Descriptions ... 17

5.3.1 I2C_ConfigureMpsse ... 17

5.3.2 I2C_SendByteAndCheckACK .. 19

5.3.3 I2C_SendDeviceAddrAndCheckACK .. 20

5.3.4 I2C_ReadByte ... 20

5.3.5 I2C_Read2BytesWithAddr ... 21

5.3.6 I2C_SetStart ... 22

5.3.7 I2C_SetStop .. 22

5.3.8 I2C_SetLineStatesIdle .. 22

5.3.9 I2C_GetGPIOValuesLow .. 23

5.3.10 I2C_SetGPIOValuesHigh ... 23

5.3.11 I2C_GetGPIOValuesHigh ... 23

5.3.12 Sending and Receiving Data via D2xx .. 24

5.3.13 Send_Data ... 24

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 3
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5.3.14 Receive_Data .. 24

5.3.15 FlushBuffer ... 25

6 Further Development .. 26

6.1 Other Languages ... 26

6.2 Adding support for FT2232H and FT4232H devices 26

6.3 Clock Stretching .. 26

6.4 Hardware .. 26

7 Using the Meter ... 27

8 Conclusion ... 29

9 Contact Information .. 30

Appendix A - References .. 31

Document References ... 31

Acronyms and Abbreviations ... 31

Appendix B – List of Tables & Figures 32

List of Tables ... 32

List of Figures ... 32

Appendix C – Revision History ... 33

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 4
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

1 Introduction
This application note provides an example of using the MPSSE feature of the FT232H device as an I2C
Master with a Visual Basic .NET 2013 project.

In this project, the device is used to interface to a Texas Instruments INA219 voltage and current sensing
amplifier, in order to create a small adapter for measuring the DC voltage and current consumed by a
device.

The application is intended as an example of using the FT232H MPSSE to implement an I2C master but
also provides a useful tool when developing applications using USB peripherals and other low-voltage
circuits. For example, it could be used for monitoring the consumption of an FTDI VM800P EVE board, or
an FT900 MCU board, or a variety of other low voltage DC devices. Monitoring the current consumption
can be very helpful both in verifying expected operation and identifying issues during debugging since

many aspects of a device’s operation are reflected in the current which it consumes.

The project could be easily modified to use a variety of different I2C sensor devices (temperature, light,
force, ADC and many others) to create monitoring applications.

A big advantage of using MPSSE is that there is no firmware to develop, program and maintain. The
FT232H is a hardware bridge supplied ready to use, with the MPSSE controlled entirely by commands

from the PC. This means that any changes in functionality of the end product (such as to add features,
read different registers in the I2C peripherals or add support for different I2C peripherals) can all be
implemented with a new release of the application program running on the PC.

This application note demonstrates the following principles:

 Using the FTDI D2XX Drivers with Visual Basic NET applications

 Using the FT232H’s MPSSE to implement I2C protocol

 Displaying the gathered data in a graphical user interface

 Using the AD3:7 pins as GPIO (useful for C232HM cable applications where only ADBUS is

accessible)

Note: This software is intended only for the FT232H device as it uses the open-drain mode available on
this device. The FT2232H and FT4232H devices also contain an MPSSE but require additional commands
in order to tristate the I2C lines to simulate an open-drain configuration. Application notes AN_411 (C#)
and AN_113 (C++) show examples using this technique.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Products/ICs/FT232H.htm
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ftdichip.com/Products/Modules/EVEModules.html
http://www.ftdichip.com/Products/Modules/MCUModules.htm
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Products/ICs/FT2232H.html
http://www.ftdichip.com/Products/ICs/FT4232H.htm
https://www.ftdichip.com/Support/Documents/AppNotes/AN_411_FTx232H%20MPSSE%20I2C%20Master%20Example%20in%20Csharp.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_113_FTDI_Hi_Speed_USB_To_I2C_Example.pdf

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 5
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

2 Hardware

2.1 Hardware Description

This section describes the hardware used for this example.

UM232H

This module is designed by FTDI to allow easy evaluation of the FT232H and includes all components
needed for the device including the USB connector and internal EEPROM. Its dual-in-line footprint allows

it to be connected to a breadboard, solder pad board or turned-pin IC socket. It can also be used in the
final product to simplify the USB part of the hardware. Note that connections must be made to the VIO
and 5V0 power pins before the module will be recognised by a PC.
Power

A small regulator provides a stable 3v3 supply to the INA219 as the USB 5V supply can vary within the
tolerance limits defined in the USB spec. The FT232H has a built-in regulator supplying 3v3 which could

also be used since the INA219 consumes very little current. Since this internal regulator was supplying
the VCCIO rail and the flashing status LED, the separate regulator was selected to ensure a stable supply
to the amplifier in this case.

Current Shunt Monitor (INA219)

A current shunt monitor (also known as a current sense amplifier) works by measuring the voltage (the
shunt voltage) across a low-value sense resistor which is connected in series with the load to be
measured. This allows the current to be determined by a simple Ohms-law calculation.

One key feature of a high-side current shunt monitor amplifier is its ability to measure the difference
across a shunt resistor when neither end is at ground potential, and to turn this into a ground-referenced
voltage which can be measured by an ADC. This allows it to be connected in the positive side of the

power supply to be measured. Since circuits often have several paths to ground, it can be difficult to

measure a current accurately if the sense resistor had to be connected in the ground side (low side
current sensing).

The INA219 also measures the voltage with respect to ground at the downstream end of the sense
resistor, which represents the real voltage that the load sees taking account of any small voltage drop in
the sense resistor itself.

Whilst many current shunt monitors output a voltage or current proportional to the shunt voltage, this
particular device has an ADC built-in and so can be connected directly via I2C, which helps reduce the
component count and simplifies the hardware design significantly.

Figure 1 – Current shunt monitor principles

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Products/ICs/FT232H.htm
http://www.ti.com/lit/ds/symlink/ina219.pdf

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 6
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The INA219’s I2C address can be configured via the two address pins. Details are given in the INA219
datasheet. In this example, both lines are grounded for an address of 0x40.

A 0.05 Ohm sense resistor is used to minimise the voltage drop. The sense lines of the amplifier may

have small series resistors (e.g. up to 10 Ohms) to provide additional protection against spikes etc. which
could occur on the VBUS connection being monitored. An optional capacitor allows filtering to be applied
to the measurement if required. The B version (INA219B) was selected as it has higher accuracy.

Due to the surface mount package of this device (and many other sensor devices) a break-out board may
be used for prototyping. For example, the Roth RE906 board can be used for the INA219’s SOT package.
Breakout boards for the device are also available ready-made from various vendors.

Connectors

Since this application is intended to measure USB VBUS currents, two USB connectors were also added in

a pass-through configuration to enable the unit to be connected in-line with an existing USB connection.
The GND, DP and DM lines are linked directly from the IN connector to the OUT connector. The VBUS line
between the two connectors goes through the current sensing resistor. The diagram below shows

measurement of a PC mouse current consumption.

The current in, current out and ground connections are also available on a pin header on the rear panel
to allow jumper wires to be used instead of the USB connections, which is useful if measuring the voltage
and current on a power rail on an evaluation board or similar. Since both the USB connectors and the pin
header share the same current sensing circuit, only one of these connection types should be used at any

time. The diagram shows measurement of the consumption of an FTDI VM800 being powered from a
PSU.

Figure 2 – Examples of USB and pin header measurement connections

GPIO

A status LED was also added to demonstrate the way in which the other pins on port ADBUS which are
not used for I2C (AD3-7) can be used as GPIO lines. This is especially useful for the C232HM cables which
have no ACBUS access and so any GPIO must be on the ADBUS.

Two of these ADBUS lines are available on the rear connector. The software configures them as inputs
and reflects their state via radio buttons. This could be developed to show for example a marker on the
current graph when triggered or to provide a start/stop signal from hardware. Or one or both could be

configured as an output to provide a signal to another piece of equipment when a certain current level is
observed.

PC running power
meter application

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.roth-elektronik.com/en/produkte/detail/artnr/RE906/category/Multiadapters?pitch=1%2C27&grid=1%2C27

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 7
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The ACBUS lines are also available for GPIO purposes, where AC7:0 provide up to 8 additional I/Os. It is
therefore possible to have up to 13 GPIO lines in addition to the I2C lines.

I2C

For the I2C itself, the lines AD2:0 are used. AD0 is the MPSSE’s clock out pin and is therefore connected
to the SCL line of the I2C bus. The MPSSE always generates the clock and as such is always the I2C
Master. It is not designed for multi-master operation.

For data, the MPSSE has two separate pins; ADBUS 1 is the Data Out pin and ADbus2 is the Data In pin.
Since the I2C bus uses a single bi-directional data line, the data in and data out lines are connected

together to allow data to be both written out and read in. The I2C libraries in the software application set
the pin states to be output for AD0 (clock) and AD1 (data out) and to be an input for AD2 (data in). The
FT232H has a drive-only-zero feature which allows any of AD7:0 and AC7:0 to be selected as open-drain.

FT232H EEPROM Settings

It is recommended that the FT232H has a configuration EEPROM fitted and that the device is set to FIFO

mode. Provided that the RD# and SI/WU# lines on ACBUS are de-asserted (pulled high) by the hardware
then, the 8 ADBUS lines will begin as tri-state when the FT232H starts up. If set for UART mode, the
ADBUS lines would drive out their idle UART states until the I2C_ConfigureMPSSE function is called. The
device can enter MPSSE mode from either UART or FIFO but the FIFO mode avoids any contention in the
time between the user connecting the hardware and starting the application. Note that even in FIFO
mode, some ACBUS lines are driven (e.g. TXE#) and so this should be considered when assigning ACBUS

lines for GPIO purposes. Asynchronous FIFO pin assignments can be found in the FT232H datasheet.

It is suggested that the VCP option be turned off in the EEPROM so that the UM232H is not accidentally
opened by the user in other COM port applications such as terminals. This ensures the port is available to
be found by the meter application.

With an EEPROM, the device description string and serial number can also be changed to allow easy

identification of the device. For example, the code provided looks for description “UM232H”.

Note that FTDI FT232H modules/cables such as UM232H and C232HM have configuration EEPROMs fitted
on-board. FTDI’s free FT_PROG software can be used to change EEPROM settings over USB if required.

2.2 Prototype Hardware

Figure 3 – Prototype Hardware

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Support/Utilities.htm#FT_PROG

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 8
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

2.3 Schematic

The following diagram shows the schematic of the hardware unit:

Figure 4 – Schematic of the prototype meter

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 9
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3 Software

The software is written in Visual Studio 2013 using Visual Basic NET. Later versions of Visual Studio
should also upgrade the project when opening.

The code for this application note is arranged in three particular files. These are discussed further in the
following sections.

 Application code (see iChart.vb)

The main application itself, which handles the user interface and calls the generic I2C functions
below.

 I2C Functions (see FT232H_I2C.vb)

These functions form a generic I2C library and can be called from the Application code. This
allows them to be used for a variety of different applications. Their main purpose is to convert the
I2C calls from the main application into a series of MPSSE commands which are in turn sent using
the calls to the D2xx driver.

 D2xx VB Wrapper (see FTDI_VB_Wrapper.vb)

When programming in VB, a wrapper is needed to allow the application to call the D2xx functions
in the FTDI driver. FTDI also have a wrapper for C# applications. C++ applications can call the
functions directly.

The source code for this Application Note can be downloaded here.

3.1 Sample code package

Two different example code projects have been included in the provided zip file; the full current meter

application and a simplified I2C application listing. They both share the same library and wrapper layers.

The simplified example allows the I2C parts of the code to be easily identified without the additional
graphics code for the chart etc. and may be a good starting point for developing other applications which
don’t require a chart display.

Note: This application is intended to demonstrate the MPSSE programming required to implement an I2C
Master interface. Some error checking and handling have been implemented where possible without
affecting readability of the MPSSE code. However, the code is not intended to reflect all best practices for
Windows application programming such as error handling and GUI implementation.

Both the main application and the library functions are intended to be used as the basis for further

development and may require customisation to suit the particular application and I2C peripheral. The
functions are not intended as a ready-made library to suit all applications without modification. This
flexibility to customise the code at lower levels allows fine-tuning of the I2C routines to suit the intended
application.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
https://www.visualstudio.com/
http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples/VB/AN_355.zip

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 10
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4 Current Meter Application Code

This section briefly outlines the main meter application. The application consists of the main window and
has handlers for each of the buttons.

The user interface has the following features:

- Numerical readout of current and voltage values
- Device details panel showing how many FTDI devices in total are connected and the status of the

meter
- Two radio buttons used as indicators only, showing the state of the two GPIO lines which are

available on the pin header of the meter
- Scrolling chart showing the profile of the measured current. Three ranges available for the chart

are selectable via radio buttons, allowing the user to select full scale of 200mA, 800mA or

1600mA.
- Save chart button allows saving of the chart area as a bitmap image file for future reference or

inclusion in documents etc.
-

Figure 5 – Application window showing connection of a Flash drive

4.1 Form1_Load

On loading of the form, this handler sets the properties of the buttons and radio buttons to their initial
states.

4.2 Button_Init_Click

When the user clicks the Initialise button, D2xx calls are used to determine how many FTDI devices are
connected. If the user runs the program without having any FTDI driver installed (or if they have run the
setup executable but not connected a device yet) then the program will fail to find the D2xx DLL. A try-
catch around the first call will catch this exception in a user-friendly manner instead of a system
exception.

The application then does an open by description of “UM232H”. This string should be changed if the

module or cable being used has a different string. Or a drop-down could be added to the GUI to allow the
user to select the device. Then, the I2C_ConfigureMPSSE function is called to set the device up for MPSSE

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 11
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

operation. On completion, the status LED on ADBUS 7 is illuminated by setting the global variables for
GPIO data and direction and calling I2C_SetLinesIdle.

4.3 Button_Start_Click

When the user then clicks the start button, the application uses the I2C functions to write to the
configuration register of the INA219. It sets the full scale for voltage to 16V and the full scale for current
to 80mV sense voltage.

Note: Full details of the INA219’s registers, result format and I2C protocol can be found in the INA219
datasheet. The FTDI application note AN_356 also has additional information on using the INA219.

It then enters a loop which runs as long as the LoggingEnabled variable is True. This loop carries out the
actions detailed below. Note that a more advanced application could start a thread which carries out the

data collection and passes it back to the main application for display.

Blink LED

Read Voltage over
I2C

Logging
Enabled ?

A GPIO operation turns the status LED on or off depending on a counter
value, causing the LED to blink. A counter is used as blinking off at every

sample would be too fast to be visible.

A voltage reading is taken from the INA219. A write is carried out to the INA219
(address 0x40) to select the voltage result register (register index 2). Then a
repeated start is sent followed by a 2-byte read transaction to address 0x40.
This is summarized below (error checking omitted for clarity, see the source
code provided for full details)

AppStatus = I2C_SetStart()

AppStatus = I2C_SendDeviceAddrAndCheckACK(&H40, False)
AppStatus = I2C_SendByteAndCheckACK(&H2)
AppStatus = I2C_SetStart()
AppStatus = I2C_Read2BytesWithAddr(&H40)
AppStatus = I2C_SetStop()

The two bytes read are then masked to leave only the 12 result bits, giving
4096 steps from 0-16V and so 4mV per step. The variable voltage now contains

the value in units of Volts.

GPIO write to turn
on Status LED

If the logging is being stopped, a GPIO
operation ensures the status LED is
turned on which indicates device

configured but stopped.

Y

N

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_356%20FT800%20Interfacing%20I2C%20Sensor%20to%20VM800P.pdf

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 12
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4.4 Button_Stop_Click

When the user clicks the Stop button, the LoggingEnabled variable is set to False so that the while loop
taking the measurements will exit after the next complete measurement.

Read Current over
I2C

I2C
Transactions
succeeded?

Update Numerical
Readouts

Add latest current
value to circular

buffer

GPIO read and
update status

indicators

Invalidate chart
picturebox to force

re-paint

This process is repeated for the Current. A write is carried out to the INA219
to select the current shunt voltage result register (register index 1 in the
INA219’s register map). Then a repeated start is sent followed by a 2-byte
read transaction, as summarized below.

AppStatus = I2C_SetStart()
AppStatus = I2C_SendDeviceAddrAndCheckACK(&H40, False)
AppStatus = I2C_SendByteAndCheckACK(&H1)
AppStatus = I2C_SetStart()
AppStatus = I2C_Read2BytesWithAddr(&H40)
AppStatus = I2C_SetStop()

The current in mA is then calculated from the values read. The code checks
the sign bits in the INA219 result to determine the direction of the current.
Whilst the INA219 can measure bi-directional current, the sample

application will only chart a positive current and so if the current is flowing
in reverse, it is displayed as 0mA. The application could be easily extended
to measure bi-directional current by means of a larger chart or colour
coding of the chart line to indicate direction.

If the I2C transactions to read the results all succeeded (and
therefore the results are valid)

The numerical readouts are updated with the
current and voltage values.

The current value is then added to the next
location in a circular buffer CurrentArray. This
array contains a rolling set of the latest 500

values (corresponding to the chart width of
500). The variable GraphInputPointer is
incremented each time to point to the location

where the next result should be added. This
array will be used in the chart plotting
function.

A GPIO read is carried out to check the values of bits AD4 and AD5 and
the radio button indicators on the screen are updated.

The PictureBox which contains the graph is then invalidated so that it

will be re-drawn. See the PictureBox2_Paint handler below.

Y

N

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 13
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4.5 PictureBox2_Paint

This handler is called whenever Windows re-paints the picture box containing the chart e.g. loading of the
form or when the application itself triggers a re-paint to update the chart after the addition of a new data
point.

The entire chart is re-drawn including the scale values such that any change in the scale selected by the
user is applied immediately.

After plotting the scales and tick marks etc., the actual chart line is drawn. Chart data is taken directly
from the same array / circular buffer used to store the 500 data points by the routine which reads from
the INA219.

The plotting begins at x = 0 with the oldest data point (i.e. one location above the last point added to the

result array, or GraphInputPointer + 1) and continues until x = 499 (which will contain the latest data
point measured). The effect of this is that each time the chart is updated, the oldest value will be at the
left hand side and the newest value will be at the right-hand side. The chart therefore appears to scroll
left as new points are added.

The data is scaled depending on the range selected by the user so that the selected range will fit entirely
in the 400 pixels height of the chart.

If the value exceeds the range set, the y value is truncated at 399 and the corresponding pen colour is
set to red to indicate the exceedance. The numerical readout will continue to read the correct value up to
1600mA even if the chart range is set for 200mA etc.

Since the coordinates of the picture box are taken from the top down, each Y coordinate is adjusted by Y
= (400 – Y) so that they are now targeted to the bottom of the window with positive Y in the up

direction.

The chart is then created by drawing a series of lines between pairs of points to create a single chart line.

Figure 6 – Chart values

Data
Index

Data
(mA)

 Chart
X

Chart
Y

0 750 189 375

110 450 499 225

111 24 0 12

499 500 188 250

New

Reading

(0, (400-12))

(188, (400-250))

(499,(400-225))

Note: 800mA scale shown here and so Y values
are divided by 2 when drawing chart to fit in
the 400 pixel high chart area

Y coordinate is created by subtracting
value from 400 as origin is at the top-left

See following section for details on scaling

Data Array Chart Values

/2

(0,0)

500 pixels

4
0

0
 p

ix
e

ls

(189, (400-375))

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 14
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4.6 Button_Save_Click

The Save button can be used when the logging is stopped to save a bitmap image of the chart area.
Since the chart is created on a picture box, the DrawToBitmap function in Visual Basic can be used to
convert this to a bitmap. A save dialog is displayed allowing the user to select the location to save the
file. Some additional error checking and user options etc. may be beneficial in this part of the application.

Figure 7 – Chart saved as bitmap

4.7 Button_Exit_Click

When the Exit button is pressed, a GPIO write is carried out to turn off the status LED and ensure the I2C
lines are in the idle-between-transactions state (both released). An FT_Close then closes the port of the
FT232H.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 15
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5 I2C Functions

The I2C functions are contained within the file FT232H_I2C.vb. They provide the main application with a
set of commands for the familiar I2C operations and create the required buffer of MPSSE commands
which are sent to the chip in order to implement them on the I2C lines. By doing so, they avoid the main
application from needing to know about the specifics of the MPSSE.

The following functions are provided within the example application:

 I2C_ConfigureMpsse
 I2C_SendByteAndCheckACK
 I2C_SendDeviceAddrAndCheckACK
 I2C_ReadByte

 I2C_Read2BytesWithAddr

 I2C_SetStart
 I2C_SetStop
 I2C_SetLineStatesIdle
 I2C_GetGPIOValuesLow
 I2C_SetGPIOValuesHigh
 I2C_GetGPIOValuesHigh

 These are supported by the functions Receive_Data, Send_Data and FlushBuffer

Note that these functions are intended as a starting point for development of an application rather than a
fixed library. They may need to be changed or additional ones created to suit the specific application and
intended I2C Slave devices.

These functions use return code 0 to indicate success and a return code of 1 if an operation inside the

function call failed. This could be extended to provide additional return codes if it is required to inform the
calling function of the reason for failure.

Note: This section uses the terminology I2C transaction to represent the time between I2C Start and I2C

Stop i.e. the bus is busy.

Idle-within-transaction SCL held low and SDA released/floating
Idle-outwith-transaction SCL and SDA lines are both released/floating

5.1 MPSSE Commands

The application uses a combination of D2xx calls and MPSSE commands to configure the device and then
to implement I2C communications.

 The D2xx calls are commands direct to the chip hardware and/or driver. Examples include
FT_SetFlowControl, FT_SetBitMode, FT_Read and FT_Write.

Please refer to the D2XX Programmer's Guide for more information on the D2XX functions.

 The MPSSE commands are built up into a buffer/array by the application and sent to the chip via
an FT_Write. The device must be put into MPSSE mode beforehand. The MPSSE engine in the

device will then parse and execute these commands in the same sequence. Sending a buffer
containing a series of GPIO commands and data clocking commands allows customized data

transfers to be achieved and makes the MPSSE very flexible.

Application note AN_108 details the command set of the MPSSE and AN_135 contains further
information on the MPSSE.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_135_MPSSE_Basics.pdf

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 16
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5.2 Example Usage of the I2C Functions

The basic I2C demo application provided with this application note provides a simple example of calling
the library functions. Please refer to the code provided in the project. The code illustrates the following
topics.

- Opening the port and handling an exception in a user-friendly manner if the driver was not
installed

- Configuring the MPSSE and setting the GPIO lines to all input as an initial state

- Configure the INA219 via I2C writes to its control register

- Reading the values from the INA219.

o Use an I2C write to send the register address and then
o Use an I2C read of two bytes to retrieve the data.

- Read the ADBUS GPIO and display AD6 to AD3 on radio button indicators (AD7 is for LED)

- Read the ACBUS GPIO and display AC7 to AC0 on radio button indicators

- Closing the device

Refer to the file iChart.vb within the code project for the main application code. Each section is
highlighted by a heading as shown below:

Figure 8 – Basic example code

The code runs through the steps mentioned above after the user clicks the Run button. Each step has a 2
second delay to allow the steps to be visualised as the program runs. The Measurement status entry
informs the user of the current step in progress.

Figure 9 – Basic example application

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 17
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5.3 Function Descriptions

5.3.1 I2C_ConfigureMpsse

Configures the MPSSE in the device for operation as an I2C Master

Public Function I2C_ConfigureMpsse() As Byte
IN Global FT_Handle of open device channel
IN Global ClockDivisor value
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Return Byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) before proceeding to make any

further calls to this I2C library.

This function uses a combination of device API calls (e.g. FT_SetLatencyTimer) and MPSSE commands
sent via an FT_Write (e.g. setting MPSSE clock divider).

It requires that the device channel is already open with a valid handle. It then uses the SetBitMode
command to enter MPSSE mode. The flow control is set to RTS_CTS mode to ensure that the driver uses
flow control.

The latency timer is left at 16ms as the I2C functions use the MPSSE’s send immediate command to get
bytes back to the PC quickly when required. This is preferable as setting low latency timer values

increases the USB traffic (since it sends a packet back at the interval specified even if no data is being
transferred) whereas Send Immediate will only do so when required.

After purging the read buffer to ensure it is empty, the function checks that the device is correctly in
MPPSE mode by sending a bad command. This is an invalid command 0xAA which is not part of the
MPSSE command set. The MPSSE should respond with two bytes, 0xFA followed by the invalid command
0xAA which is received. Reading these back confirms that the device is correctly in MPSSE mode. This is

then repeated with 0xAB.

The FT232H has a drive-only-zero feature which can be enabled individually on any of the 16 ACBUS and
ADBUS pins. This is effectively an open-drain mode for the selected pins and is again ideal for I2C where
the lines are pulled down for logic 0 but released (pulled up by external resistors rather than driven high)
for logic 1, thereby allowing many devices to share the same clock and data lines.

Note: The open-drain feature is only available for the FT232H but not for the FT2232H or FT4232H.

The 3-phase clock mode is enabled which gives three clock phases. This is necessary as the I2C protocol
requires data to be valid on both clock edges. The comparison of two vs three phase clocking is shown
below.

- There is now both a rising and a falling edge whilst the data is stable, as required by the I2C
protocol.

- The three-phase clocking extends each clock cycle by a half-cycle and so each cycle will now be

50% longer. Therefore the frequency (for a given clock divider value) in three phase mode is
2/3rdof the value than the same waveform in two-phase mode.

- The clock duty cycle is now 33.3% rather than 50%.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 18
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Two-phase clocking: Clock Period: 6.5us, Clock Frequency: 153.846 KHz, Duty Cycle 50%

Three-phase clocking: Clock Period: 10us, Clock Frequency: 100 KHz, Duty Cycle 33.3%

Figure 10 – Three-Phase clocking

The clock divider is set to give the required I2C clock rate, which is created by dividing down the 60MHz
clock which is supplied internally to the MPSSE. The divider calculation below is for a 400 KHz I2C rate.
600 KHz is used as the basis due to the actual rate being 1/3rd lower in three-phase clock mode.

MPSSE Clock Source = 60MHz

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 =
60𝑀𝐻𝑧

(1 + 𝐶𝐿𝑂𝐶𝐾𝐷𝐼𝑉𝐼𝐷𝐸𝑅) ∗ 2

600,000 =
60,000,000

(1 + 𝐶𝐿𝑂𝐶𝐾𝐷𝐼𝑉𝐼𝐷𝐸𝑅) ∗ 2

600,000 ∗ (1 + 𝐶𝐿𝑂𝐶𝐾𝐷𝐼𝑉𝐼𝐷𝐸𝑅) ∗ 2 = 60,000,000

1 + 𝐶𝐿𝑂𝐶𝐾𝐷𝐼𝑉𝐼𝐷𝐸𝑅 = 50

𝐶𝐿𝑂𝐶𝐾𝐷𝐼𝑉𝐼𝐷𝐸𝑅 = 49 (0𝑥31)

An optimised equation for three phase clock mode is:

𝐶𝑙𝑜𝑐𝑘 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
30

(𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 ∗ 1.5)
− 1

Assuming Clock Rate in MHz, three-phase clocking enabled, and MPSSE divide-by-5 option disabled

Note: The Clock Divisor is always an integer and so some rates may need to be rounded to the nearest
available value.

The I2C_SetLineStatesIdle function is then called to set the I2C lines to their idle states and will also
apply the GPIO values to ADBUS required by the application (which can be set in global variables
ADbusVal and ADBusDir before calling the I2C_ConfigureMPSSE function. A call could also be added here
to set the high byte GPIO if desired.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 19
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The function returns a status value where 0 indicates success. It would be possible to extend this to
return additional error codes in the event that the function failed to allow the calling code to identify the
cause.

5.3.2 I2C_SendByteAndCheckACK

Writes a byte to the I2C bus

Public Function I2C_SendByteAndCheckACK(ByRef DataSend As Byte) As Byte
IN Passed in Data byte to be sent
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Global I2C_Ack is a boolean value (True if the I2C device ACKed the byte)
OUT Return Byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) and then check if I2C_Ack is True

to determine if the I2C peripheral ACKed the byte written.

This function will clock out one byte to the I2C bus, to write a value to the attached I2C peripheral. Before
calling this function, the I2C device should be addressed via I2C_SendDeviceAddrAndCheckACK.

The first command clocks out one byte MSB first, which is the data byte to be sent.

A GPIO command is then added to the buffer. This is to ensure that the SDA line is always released after
the write regardless of the last data value. The value written combines the normal state of the I2C lines
(AD2:0) when within a transaction (SCL low, SDA released) with the GPIO values of AD7:3. The GPIO
lines are therefore also updated to the current values of their global variables. This command adds
negligible delay but can be removed if the application does not require SDA to be at a particular state
when idle within a transaction or can be changed so that SDA stays pulled low between transfers during a

transaction.

The third command clocks in one bit which is the ACK bit from the peripheral.

Finally, a Send Result Back Immediately command (0x87) is added which will cause the value clocked in
from the I2C peripheral (the ACK bit) to be sent back to the host PC as quickly as possible.

The buffers of commands are sent to the FT232H by calling the Send_Data function. The Receive_Data
function is used to read a single byte which has come back from the MPSSE and contains the ACK/NAK
bit. The function checks this value and sets the I2C_Ack global variable to reflect the state (True means
the peripheral ACKed).

The function returns 0 if all calls for the writing of the commands and reading of the ACK bit succeeded.

It returns 1 if any of these failed. The code could be extended to return a wider range of error codes if
desired.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 20
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5.3.3 I2C_SendDeviceAddrAndCheckACK

Sends an I2C address on the bus

Public Function I2C_SendDeviceAddrAndCheckACK(ByRef Address As Byte, ByRef Read As Boolean)
As Byte
IN Passed In Address – I2C address of the device to be communicated with
IN Passed In Read – Boolean value specifying read (true) or write (false)
IN Global GPIO_Low_Dat – data values to write to AD7:3
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
OUT Global I2C_Ack is a boolean value (True if the I2C device ACKed the address)
OUT Return Byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) and then check if I2C_Ack is True

to check if the I2C peripheral ACKed the address written.

This function is very similar to the I2C_SendByteAndCheckACK call discussed above but is specifically
intended for addressing the I2C device.

Instead of taking the byte to write as a parameter, this modified function takes two parameters; a 7-bit
I2C address (in the lower 7 bits) and a separate Boolean value defining whether to address the device for
reading or writing.

Note that documentation for I2C peripheral devices may quote the I2C address in either the 7-bit or 8-bit
formats. E.g. some documentation and sample code may quote 7-bit address 0x40 whilst others may
quote the write and read values as 0x80 and 0x81 respectively. This code is designed to accept the 7-bit

value with the R/W bit specified separately.

It combines these into a single 8-bit value by shifting the 7-bit address one place left and OR’ing with the
Read Boolean parameter, and sends this to the I2C bus. As with the I2C_SendByteAndCheckACK call, this
function returns the ACK/NAK status via the global variable I2C_Ack.

5.3.4 I2C_ReadByte

Reads a single byte from the I2C bus

Public Function I2C_ReadByte(ByRef ACK As Boolean) As Byte
IN Passed In ACK – Boolean value, sends ACK if True, NAK if False
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Global InputBuffer(0) has received byte
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) and then read the byte from

InputBuffer(0). Read the byte before calling the next I2C function to avoid
overwriting.

This function will clock in one byte from the I2C bus, to read the value from a register in the attached I2C

peripheral. Before calling this function, the I2C device should be addressed and (if required) have the
register selected which is to be read. See section 5.2 and the associated basic example for details.

The first command clocks in one byte MSB first. This is the data byte being read from the I2C peripheral.

The second command clocks out one bit which forms the ACK bit. The SDA value clocked out for the ACK
bit can be configured by the application when calling the function. True will result in an ACK (SDA pulled
low) whereas False will result in a NAK (SDA left pulled high).

A GPIO command is then added to the buffer. This is to ensure that the SDA line is always released in
between bytes regardless of the last data value. The value written combines the normal state of the I2C
lines (AD2:0) when within a transaction (SCL low, SDA released) with the GPIO values of AD7:3. The
GPIO lines are therefore also updated to the values of their global variables. This command adds
negligible delay but can be removed if the application does not require SDA to be at a particular state

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 21
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

when idle within a transaction or can be changed so that SDA stays pulled low between transfers during a
transaction.

Finally, a Send Result Back Immediately command 0x87 is added which will cause the byte clocked in
from the I2C peripheral to be sent back to the host PC immediately.

The buffer is sent to the FT232H via an FT_Write command by calling the Send_Data function. The
Receive_Data function is used to read the single byte which will be clocked in by the MPSSE from the I2C
peripheral.

The function returns 0 if all calls for the writing of the commands and reading of the data byte succeeded.
It returns 1 if any of these failed. The code could be extended to return a wider range of error codes if
desired.

5.3.5 I2C_Read2BytesWithAddr

Addresses the device and reads 2 bytes

Public Function I2C_Read2BytesWithAddr(ByRef Address As Byte) As Byte
IN Passed In Address – I2C address of the device to be communicated with
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Global I2C_Ack indicates if the address phase was ACKed
OUT Global InputBuffer(0) and (1) have received bytes
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) and then check that I2C_Ack is

True. Then, read the bytes from InputBuffer(0) and InputBuffer(1). Read
the bytes before calling the next I2C function to avoid overwriting.

This function combines the commands from I2C_SendDeviceAddrAndCheckACK and I2C_ReadByte to
form a single call which addresses the peripheral for reading, and reads two bytes. It ACKs the first byte
read and NAKs the second.

Many I2C peripherals (including the INA219) have 16-bit registers which can be read in a burst. The
Master reads the first byte from the peripheral, sending an ACK in response. It then reads the second

byte responding with a NACK. The NACK tells the peripheral that the Master does not wish to read further
bytes in this transaction.

Whilst this could be accomplished with three separate calls (an address call and two read calls),
combining the equivalent operations into a single sequence of MPSSE commands can improve speed as
the commands all get sent on a single USB micro frame and the actual operations on the I2C bus will

have no gaps between. The actual saving depends on the scheduling of the USB host controller and also
whether the USB micro frame rate (125us) is significant compared to the I2C clock rate.

This function is provided as an example of the ways in which a series of operations can be combined. This
can have some dependency on the I2C peripheral being used. Since this hybrid function will not return
the ACK or the two bytes read until fully complete, it is not possible for the application to check the ACK
state of the addressing before reading. The calling code can however check the ACK bit after completion

of the call and therefore determine whether the two bytes read are valid or not. If the continuation to

generating the read cycle is not allowable by the particular I2C peripheral, then this combined function
may not be well suited.

In this case, the INA219 also has a timeout if the I2C bus is idle for too long in the middle of a transaction
(when the bus isn’t fully idle and released) and so grouping the calls is beneficial as it ensures that there
won’t be gaps between them which may cause a timeout if the USB bus gets very busy for a short time.

Gaps between writes is not an issue as the INA219 would NAK the following write attempt but gaps
between reads can’t be detected as the Master provides the ACK in a read operation. In this case, the I2C
start and stop could even be added to the same buffer of commands.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 22
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The reader may find other opportunities to group commands in a way that optimises the communication
for their I2C peripherals.

5.3.6 I2C_SetStart

Sends the I2C Start condition

Public Function I2C_SetStart() As Byte
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success)

This function will put the I2C Start condition onto the bus to begin an I2C transaction. The function can

also be used as a repeat start which is used in transactions which read data from an I2C peripheral, in
between writing to the device to select the register to be read and the actual reading operation.

The function builds a buffer of GPIO commands for the MPSSE, which it will work through in sequence.
Each GPIO write is repeated six times to hold the associated pin state for a longer time.

Both SCK and SDA are initially high (open drain pulled up). The SDA line is brought low by putting

ADbus1 low. Then, the SCL line is also brought low (ADbus0) to complete the sequence. The line is then
left in the idle-during-transaction state which is SDA released and SCL held low. This could be easily
changed if required by the applications.

5.3.7 I2C_SetStop

Sends the I2C Stop condition

Public Function I2C_SetStop() As Byte
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success)

This function will put the I2C Stop condition onto the bus. This ends the I2C transaction on the bus.

The function builds a buffer of GPIO commands for the MPSSE which it will work through in sequence.
Each GPIO write is repeated six times to hold the associated pin state for a longer time.

The SCL line is brought high by putting ADbus1 high (tri-state). Then, the SDA line is also brought high

(ADbus0) to complete the sequence.

5.3.8 I2C_SetLineStatesIdle

Sets the I2C lines to Idle Outwith Transaction and write ADBUS GPIO

Public Function I2C_SetLineStatesIdle() As Byte
IN Global GPIO_Low_Dir – direction to set for AD7:3 (1 = out, 0 = in)
IN Global GPIO_Low_Dat – data values to write to AD7:3
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success). Do not call in the middle of an

I2C transaction (i.e. between Start and Stop). This function is only for
setting GPIO when no transaction is in progress.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 23
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The global variables containing the data and direction for AD7:3 are combined with the idle-outwith-
transaction I2C pin states for ADbus2:0 (SCL and SDA both released) and this value is written via the
0x80 GPIO low commands.

Since the use of this function would result in the SCL line being released, it is only intended for use when
an I2C transaction isn’t in progress.

Note: The other I2C library calls for addressing, reading and writing will update the GPIO lines on ADBUS
as part of their operation and so if a GPIO line on ADBUS requires to be changed during a transition, the
associated global variables GPIO_Low_Dir and GPIO_Low_Dat can be written before the next I2C
operation.

5.3.9 I2C_GetGPIOValuesLow

Gets the GPIO values of ADbus 7:3

Public Function I2C_GetGPIOValuesLow() As Byte
OUT Global InputBuffer(0) has GPIO values in bits 7:3
OUT Return byte value containing status code (0 indicates success)
Notes Check that the function returns success. Then read the GPIO value from

InputBuffer(0). The SetLineStatesIdle function must have been called at
least once before in order to set the directions of the GPIO.

This function sends a GPIO low byte read command to the MPSSE along with a send-immediate command
which causes the result to be returned immediately. The resulting value is masked to zero the lower
three bits, leaving the upper five bits reflecting the GPIO value. The value can be read in bits 7:3 of the
resulting byte via InputBuffer(0) after the function has been called.

5.3.10 I2C_SetGPIOValuesHigh

Sets the data and direction of ACBUS bits 7 to 0

Public Function I2C_SetGPIOValuesHigh(ByRef ACbusDir As Byte, ByRef ACbusVal As Byte) As
Byte
IN Passed in ACbusDir contains the directions for the pins (1 = output)
IN Passed in ACbusVal contains the values to write to the pins which are outputs
OUT Return Byte value containing status code (0 indicates success)
Notes Check that the function returns success.

This function sends the 0x82 Write GPIO High Byte command followed by the value and direction bytes.
This allows control of bits 7 to 0 of the ACBUS port. The values in parameter ACbusVal will be applied to
pins which are configured as an output in the ACbusDir parameter (1 = output).

Note that the MPSSE can control and read only bits 0-7 of the ACBUS port. Bits 8 and 9 are configurable
in the EEPROM for other functions such as PWREN etc.

This function can be called any time after the MPSSE is initialised and does not affect the I2C lines.

5.3.11 I2C_GetGPIOValuesHigh

Read the values of ACBUS bits 7 to 0.

Public Function I2C_GetGPIOValuesHigh() As Byte
OUT Global InputBuffer(0) has GPIO values for this port
OUT Return Byte value containing status code (0 indicates success)
Notes Check that the function returns success.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 24
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

This function sends the 0x83 Read GPIO High Byte command followed by a send-immediate opcode which
causes the MPSSE to send the resulting byte back on the next available micro frame.

The return value should be checked to be 0 (success) and then the byte containing the pin values can be

read via InputBuffer(0).

It is recommended to call I2C_SetGPIOValuesHigh at least once after initialisation before using the
GetGPIOValuesHigh. This ensures that the ACBUS pin directions are set as required for the application.

5.3.12 Sending and Receiving Data via D2xx

Since effective use of the FT_Write and FT_Read D2xx calls involves some error checking and additional
steps (such as checking the queue status before reading), the I2C library source provided here wraps

these calls into functions Send_Data and Receive_Data. An additional call is used during initialisation to
flush any data in the driver’s buffer.

5.3.13 Send_Data

Sends the requested number of bytes to the FT232H.

Private Function Send_Data(ByVal BytesToSend As Integer) As Byte
IN Global FT_Handle of open device channel
IN Passed In BytesToSend – number of bytes to send
IN Global Data to send in SendBuffer(0) to SendBuffer(BytesToSend-1)
OUT Return Byte value containing status code (0 indicates success)
OUT Global BytesSent – number of bytes actually sent
Notes Check that function returns 0 (success) which means that all bytes were

sent. If return is non-zero, bytes actually sent can be found in BytesSent

This function uses the FT_Write D2xx call to send the data. The USB host in the PC will determine how
and when the data is sent but from the application’s point of view the data will be sent as quickly as
possible. The call blocks until complete and so setting a timeout with FT_SetTimeouts (e.g. 5 seconds as

this is only a safety measure) is strongly recommended.

5.3.14 Receive_Data

Reads the requested number of bytes

Private Function Receive_Data(ByVal BytesToRead As Integer) As Byte
IN Global FT_Handle of open device channel
IN Passed In BytesToRead – number of bytes to read
OUT Return byte value containing status code (0 indicates success)
OUT Global BytesRead – number of bytes actually read
OUT Global Data read in ReceiveBuffer(0) to ReceiveBuffer(BytesRead-1)
Notes Check that function returns 0 (success) which means that requested number

of bytes were read. If return is non-zero, bytes actually read can be
found in BytesRead

This function reads the data from the driver buffer after using FT_GetQueueStatus to check how much

data is available. When the MPSSE clocks in data or reads a byte from the GPIO of the chip, it will buffer
the data on-chip. This data will be sent back to the PC when the buffer has enough data for a USB frame
(510 bytes of data) or if the latency timer ticks over, or if a Send Immediate command is executed by

the MPSSE. This library uses the send immediate opcode after any operation involving clock in or GPIO
read and so this will be the normal mechanism used in this case. The driver issues IN requests over USB
to the device and the chip will put the data into the IN packet when one of the aforementioned conditions
occurs. The driver will buffer up this data and make it available for the application to read.

The Queue Status allows the application to check how much is currently buffered. This is especially useful
as the FT_Read is a blocking call and so it is best to read only data that is known to be available and so in

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 25
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

theory a timeout should never occur. It is strongly recommended to set a read timeout (e.g. 5 seconds)
via FT_SetTimeouts as a safety measure however.

This function works by running a loop which calls GetQueueStatus and if >0 bytes available, it reads

these and appends to a buffer/array within the function. This process continues until the expected
number of bytes (as passed in) has been received, or until the loop has run for a certain number of cycles
(acting as a software timeout).

5.3.15 FlushBuffer

Reads any bytes in the receive buffer of the driver to clear it out

Private Function FlushBuffer() As Byte
IN Global FT_Handle of open device channel
OUT Return byte value containing status code (0 indicates success)
Notes Check that function returns 0 (success) which means that all data was

flushed successfully (or no data was there to be flushed)

This function is normally only used when initializing the device for I2C. It checks the Queue Status of the

driver’s receive buffer and reads any data in the buffer in order to clear the buffer.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 26
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

6 Further Development

The sample applications provided with this application note, including the I2C functions, are intended as
the basis for further development and customisation to suit the intended application.

In addition to using the code to interface with other types of sensor, some possible areas for further
development include:

6.1 Other Languages

This application note uses the general MPSSE command set and so can be ported to any platform which
supports D2xx drivers for the FT232H. The MPSSE commands would remain the same but the method of
sending and receiving data (i.e. equivalent syntax for FT_Write and FT_Read) would require to be ported
to the equivalent calls on the new platform. The Graphical interface will also require porting to the new

platform/language. The use of a separate thread for reading of the data may also be used but is outwith
the scope of this example.

6.2 Adding support for FT2232H and FT4232H devices

The code supplied is intended for the FT232H. Additional GPIO writes are required in order to use the

code on FT2232H and FT4232H as these do not support open-drain functionality on the I2C pins. FTDI
application notes AN_411 and AN_113 have examples of this.

6.3 Clock Stretching

The MPSSE does not support clock stretching. The MPSSE has an adaptive clocking feature but this was
not specifically designed for I2C and does not provide full clock stretching functionality. For this reason, it
is not recommended to use adaptive clocking to implement clock stretching and this is not guaranteed or
supported by FTDI.

One solution may be to reduce the SCL rate. Some peripherals do not use their clock stretch capability at
lower I2C clock rates. It is recommended to test all functions of the peripheral to ensure that it does not
require clock stretching when running at this lower rate. It is also recommended to consult the datasheet
or manufacturer to confirm this. The clock divisor is a parameter of the I2C_Configure_MPSSE function
call. See section 5.3.1 for details.

When clock stretching is required by the attached peripheral, it is strongly recommended to use the new

I2C bridging devices from FTDI including the FT4222H and FT260 which have support for clock stretching
functionality. For details of these devices please refer to the links below:

 FT260 Product Page
 FT4222H Product Page

6.4 Hardware

The hardware could be enhanced by the addition of an I2C isolation chip between the UM232H and the

INA219, so that the measurement side is completely isolated electrically from the PC used to control and
monitor the meter.

Since the interface can address more than one I2C peripheral, a multi-channel monitoring system could
be created with several INA219 devices to monitor different rails of a power supply etc.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Support/Documents/AppNotes.htm
http://www.ftdichip.com/Support/Documents/AppNotes/AN_113_FTDI_Hi_Speed_USB_To_I2C_Example.pdf
http://www.ftdichip.com/Products/ICs/FT4222H.html
http://www.ftdichip.com/Products/ICs/FT260.html
http://www.ftdichip.com/Products/ICs/FT260.html
http://www.ftdichip.com/Products/ICs/FT4222H.html
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 27
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

7 Using the Meter

This section summarises the steps required to use the example provided with a Windows PC.

1. If an FTDI driver is not currently installed, install the latest driver.

a. Download the executable installer to the PC (onto the desktop etc.). This can be
downloaded from the comments column of the Currently Supported Drivers table on the
following page: http://www.ftdichip.com/Drivers/D2XX.htm

b. Right-click and select run-as-administrator

c. Follow the steps in the installation wizard until finished

The driver can also be automatically loaded via Windows update when connecting a device if the
settings in the OS are configured to allow this.

2. Using a standard USB A to mini-B cable, connect the mini-B port of the UM232H at the rear of the

unit to the USB2 port on the PC. (see the black cable in Figure 11)

Figure 11 – Connecting the unit to measure the current consumed by a CleO board

3. Windows will then complete the driver installation and the device will show up under the
Universal Serial Bus Controllers section of the device manager.

4. The red Power LED of the meter will illuminate once the driver installation completes, as the
PWREN# signal goes low at this time.

5. Open the sample code by double clicking on the executable file. This can be found in the bin >
x86 > Release folder.

For debugging and modifying the application, the solution (.sln file) can be opened in Visual
Studio.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Drivers/D2XX.htm

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 28
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

6. Click the Initialise button and the program should find the UM232H and open it and configure the
device to MPSSE mode. The blue Status LED will illuminate as the associated GPIO line is set as
an output driving low as part of the MPSSE initialisation routine.

Figure 12 – Application window after opening the program

7. Click the Run button and the blue LED on the front panel of the meter will blink to indicate that

the measurements are being taken.

8. Connect a short standard USB A-B cable from the USB port of the host PC of the link being
measured. Refer to the silver coloured cable in Figure 11. The Voltage display will now indicate
the presence of the USB VBUS voltage which will be approximately 5V.

9. Now connect the peripheral of the link to be measured to the front port of the meter, as shown
by the blue cable in Figure 11. In this case, an FTDI NerO board with attached CleO display is
being tested. (see http://www.cleostuff.com/)

Due to the pass-through configuration of the USB ports on the meter, the peripheral will behave
as if it is connected directly to the host PC. The current value and chart will indicate the current
flowing in the VBUS connection to the peripheral. See Figure 5 for an example.

10. The range buttons can be used to select a scaling factor for the data, allowing greater detail to be

observed at lower currents. Ranges of 200mA, 800mA and 1600mA can be selected.

If the current measured exceeds the present range, the points are plotted at the top of the chart
and coloured red to indicate that they are off-scale.

Whilst running, the GPIO lines AD4 and AD5 are measured and indicated via the state of their
associated radio buttons. These lines can be accessed on the prototype unit via the pin header.

11. To stop the capture, click the ‘Stop’ button.

12. At this point, the Save Chart button can be used to save a bitmap image of the chart area. Figure

7 shows an example.

The rear panel connector also has pins for GND, Current In and Current Out. These can be used instead
of the connections on the front panel. These are ideal for measuring the current of a device on EVB etc.
via a jumper inserted in-line with the supply being measured.

Note: Refer to the Readme file in the software package for important notes related to the meter usage.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.cleostuff.com/

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 29
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

8 Conclusion

This application note and accompanying example have demonstrated the implementation of a USB-I2C
Master interface with the FT232H chip, along with the use of the Visual Basic NET wrapper to control the
FT232H from a graphical user interface. It has also provided an example of how to acquire the data and
display on a basic scrolling chart user interface. This could be extended to use a wide variety of
applications, with the many different I2C sensor types available.

In addition, the demonstration provides a useful tool which can help when developing, debugging and
using USB peripherals or other low-voltage DC circuits.

FTDI have a range of FT232H-based modules including UM232H, UM232H-B and C232HM cables. This
application will work well with all of these modules as well as with the IC itself if placed on a custom

designed PCB. The sample code provided with this application note is designed for the FT232H only.

FTDI have a range of other bridging devices capable of I2C Master Implementation including the
FT2232H, FT4232H, FT4222H and FT260. The FT260 is the latest addition to the range of USB to I2C
Master Bridge devices and is a HID class which means that it can be used without loading a separate
D2xx driver. Further information can be found on these products at the FTDI homepage
www.ftdichip.com

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Products/ICs/FT232H.htm
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CABLE.PDF
http://www.ftdichip.com/Products/ICs/FT232H.htm
http://www.ftdichip.com/Products/ICs/FT2232H.html
http://www.ftdichip.com/Products/ICs/FT4232H.htm
http://www.ftdichip.com/Products/ICs/FT4222H.html
http://www.ftdichip.com/Products/ICs/FT260.html
http://www.ftdichip.com/

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 30
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

9 Contact Information

Head Office – Glasgow, UK Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

Future Technology Devices International Limited (USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-mail (Sales) sales1@ftdichip.com E-mail (Sales) us.sales@ftdichip.com
E-mail (Support) support1@ftdichip.com E-mail (Support) us.support@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com E-mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan Branch Office – Shanghai, China

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

Future Technology Devices International Limited (China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) tw.sales1@ftdichip.com E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales
representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices

International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance

requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other

materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer

confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI

devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold

harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without
notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole

nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material

or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2

Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
mailto:sales1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:support1@ftdichip.com
mailto:us.support@ftdichip.com
mailto:admin1@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/
http://ftdichip.com/

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 31
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix A - References

Document References

ICs:

FT232H Product Page
FT232H IC Datasheet
INA219 Datasheet (external link)

Hardware:

UM232H Datasheet
C232HM cables

UM232H-B modules

Documents:

AN_108 Command Processor for MPSSE and MCU Host Bus Emulation Modes
AN_255 FT232H I2C example in C++
AN_113 Interfacing FT2232H Hi-Speed Devices To I2C Bus
AN_411 FTx232H MPSSE I2C Example in C#
AN_135 MPSSE Basics

AN_356 AN_356_FT800 Interfacing I2C Sensor to VM800P

Others:

D2XX Drivers
D2XX Programmer's Guide

Source Code:

http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples/VB/AN_355.zip

Acronyms and Abbreviations

Terms Description

ADC Analog to Digital Converter

GPIO General Purpose Input Output

I2C Inter-IC bus

LED Light Emitting Diode

MPSSE Multi-Protocol Synchronous Serial Engine

USB Universal Serial Bus

VB Net Visual Basic .NET

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/Products/ICs/FT232H.htm
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232H.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CABLE.PDF
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_255_USB%20to%20I2C%20Example%20using%20the%20FT232H%20and%20FT201X%20devices.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_113_FTDI_Hi_Speed_USB_To_I2C_Example.pdf
http://www.ftdichip.com/Support/Documents/AppNotes.htm
http://www.ftdichip.com/Support/Documents/AppNotes/AN_135_MPSSE_Basics.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_356%20FT800%20Interfacing%20I2C%20Sensor%20to%20VM800P.pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples/VB/AN_355.zip

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 32
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Tables

NA

List of Figures

Figure 1 – Current shunt monitor principles ... 5

Figure 2 – Examples of USB and pin header measurement connections ... 6

Figure 3 – Prototype Hardware ... 7

Figure 4 – Schematic of the prototype meter .. 8

Figure 5 – Application window showing connection of a Flash drive ... 10

Figure 6 – Chart values ... 13

Figure 7 – Chart saved as bitmap ... 14

Figure 8 – Basic example code ... 16

Figure 9 – Basic example application ... 16

Figure 10 – Three-Phase clocking ... 18

Figure 11 – Connecting the unit to measure the current consumed by a CleO board 27

Figure 12 – Application window after opening the program .. 28

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

 Application Note

 AN_355 FT232H MPSSE Example - I2C Master with Visual Basic
 Version 1.1

 Document Reference No.: FT_001138 Clearance No.: FTDI#524

 33
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix C – Revision History

Document Title : AN_355 FT232H MPSSE Example - I2C Master with Visual Basic

Document Reference No. : FT_001138

Clearance No. : FTDI#524

Product Page : http://www.ftdichip.com/FTProducts.htm

Document Feedback : Send Feedback

Revision Changes Date

1.0 Initial Release 2017-03-07

1.1

Updated the Clock Stretching section to refer to

FT260 and FT4222H for applications needing this
feature.

2020-02-12

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1
http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_355%20Version%201.1

	1 Introduction
	2 Hardware
	2.1 Hardware Description
	2.2 Prototype Hardware
	2.3 Schematic

	3 Software
	3.1 Sample code package

	4 Current Meter Application Code
	4.1 Form1_Load
	4.2 Button_Init_Click
	4.3 Button_Start_Click
	4.4 Button_Stop_Click
	4.5 PictureBox2_Paint
	4.6 Button_Save_Click
	4.7 Button_Exit_Click

	5 I2C Functions
	5.1 MPSSE Commands
	5.2 Example Usage of the I2C Functions
	5.3 Function Descriptions
	5.3.1 I2C_ConfigureMpsse
	5.3.2 I2C_SendByteAndCheckACK
	5.3.3 I2C_SendDeviceAddrAndCheckACK
	5.3.4 I2C_ReadByte
	5.3.5 I2C_Read2BytesWithAddr
	5.3.6 I2C_SetStart
	5.3.7 I2C_SetStop
	5.3.8 I2C_SetLineStatesIdle
	5.3.9 I2C_GetGPIOValuesLow
	5.3.10 I2C_SetGPIOValuesHigh
	5.3.11 I2C_GetGPIOValuesHigh
	5.3.12 Sending and Receiving Data via D2xx
	5.3.13 Send_Data
	5.3.14 Receive_Data
	5.3.15 FlushBuffer

	6 Further Development
	6.1 Other Languages
	6.2 Adding support for FT2232H and FT4232H devices
	6.3 Clock Stretching
	6.4 Hardware

	7 Using the Meter
	8 Conclusion
	9 Contact Information
	Appendix A - References
	Document References
	Acronyms and Abbreviations

	Appendix B – List of Tables & Figures
	List of Tables
	List of Figures

	Appendix C – Revision History

