
Future Technology Devices International Limited (FTDI) 

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom 
Tel.: +44 (0) 141 429 2777    Fax: + 44 (0) 141 429 2758 

E-Mail (Support): support1@ftdichip.com  Web: http://www.ftdichip.com 

Copyright © 2012 Future Technology Devices International Limited 

 

 

 

 

 

Application Note 

AN_226 

FT313H Programming Guide 

 

Document Reference No.: FT_000764  

Version 1.1 

Issue Date: 2012-11-01 

 

 

 

 
  

This document provides a detailed description on how to develop software for the 
FT313H host controller 



 

 Copyright © 2012 Future Technology Devices International Limited 1 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

Table of Contents 

1 Introduction .................................................................... 3 

1.1 Overview ................................................................................... 3 

1.2 USB host software architecture ................................................ 4 

1.3 FT313H Chip Archiecture........................................................... 5 

2 FT313H hardware access ................................................ 6 

2.1 FT313H register map ................................................................ 6 

2.2 Chip Access Mode Select ........................................................... 7 

2.3 Register Access ......................................................................... 7 

2.4 Memory Access ......................................................................... 8 

2.5 Summary .................................................................................. 9 

3 Chip initialization sequence ........................................... 10 

3.1 Set chip access mode and reset the chip ................................. 10 

3.2 Chip hardware mode setup and turn on VBus ......................... 11 

3.3 Optional battery charging function initialization ..................... 11 

3.4 Initiailze data structure for USB host controller ...................... 11 

4 USB host operations ...................................................... 12 

4.1 Root hub control ..................................................................... 12 

4.1.1 USB peripheral insert and remove ............................................................. 12 

4.1.2 USB port reset and speed negotiation ........................................................ 12 

4.2 USB transfer schedule ............................................................. 13 

4.2.1 Asynchronous transfer schedule ................................................................ 13 

4.2.2 Periodic transfer schedule ......................................................................... 14 

4.2.3 Summary and further readings .................................................................. 15 

4.3 Power management ................................................................ 15 

4.3.1 FT313H chip level power management ....................................................... 16 

4.3.2 FT313H port level power management ....................................................... 17 

4.4 Interrupt handling .................................................................. 18 

4.4.1 EHCI related interrupts ............................................................................ 18 

4.4.2 FT313H interrupts ................................................................................... 18 

5 Reference Source Code ................................................. 19 

6 FTDI Chip Contact Information ..................................... 20 

7 Appendix A – References ............................................... 21 

Document References ..................................................................... 21 



 

 Copyright © 2012 Future Technology Devices International Limited 2 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

Acronyms and Abbreviations ........................................................... 21 

8 Appendix B – List of Tables & Figures ........................... 22 

9 Appendix C – Revision History ....................................... 23 

 



 

 Copyright © 2012 Future Technology Devices International Limited 3 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

1 Introduction 

 

1.1 Overview 

FT313H is a single port Hi-Speed Universal Serial Bus (USB) Host Controller which is compliant with 
Universal Serial Bus Specification Rev 2.0 [1] and compatible with Enhanced Host Controller Interface 
Specification Rev 1.0 [2]. 

 

In this document, software development and integration for the FT313H is described, which covers the 

following topics: 

1. USB host software and FT313H chip architecture 
2. FT313H hardware access method 
3. FT313H initialization sequence 

4. FT313H root hub operations 
5. Brief introduction of USB traffic scheduling for FT313H 

6. FT313H power management 
7. FT313H interrupt handling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://www.usb.org/developers/docs/usb_20_102512.zip
http://www.intel.com/technology/usb/download/ehci-r10.pdf
http://www.intel.com/technology/usb/download/ehci-r10.pdf


 

 Copyright © 2012 Future Technology Devices International Limited 4 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

1.2 USB host software architecture 

USB host software architecture is shown in Figure 1: 

 

Function driver 1 Function driver 2 Function driver n

USB Driver

FT313H Host Controller Driver

FT313H Hardware

System Bus

 
Figure 1: USB host software architecture 

 

The highest layer is the function driver(s) which is used to serve certain USB peripherals, such as Mass 
storage or HID; the second highest layer is USB driver (USBD), which provides general USB operations 

and interface to function drivers, this part is normally provided by the operating system; the lowest layer 
of software is the host controller driver (HCD), which is hardware dependent and provides services to 
USBD by the actual hardware.  For a detailed description on the USB host software architecture refer to 
chapter 10 of the Universal Serial Bus Specification Rev 2.0 [1].  

 

In this document, we focus on the lowest layer, that is, host controller driver development for FT313H 
host controller hardware. 

 

 

 

 

 

 

http://www.usb.org/developers/docs/usb_20_102512.zip


 

 Copyright © 2012 Future Technology Devices International Limited 5 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

1.3 FT313H Chip Archiecture 

The rough block diagram of the FT313H is shown in Figure 2 from the software perspective. 

EHCI compatible host 

controller

FT313H Built-in Memory 

(24 KB)

FT313H other control 

parts

Registers

To software

 
Figure 2: Block diagram of FT313H 

 

From the software perspective, FT313H is roughly an EHCI host controller with its own built-in memory 
(not using system memory) plus some other control functions not provided by EHCI. All of these 

resources are accessible through the FT313H’s register interface which occupies 256 bytes of address 
space. For a detailed structure of the FT313H register map, refer to FT313H Datasheet [3]. The built-in 
memory of the FT313H houses the EHCI periodic frame list, compatible transfer descriptors and 
associated USB payload data. It is the host controller software’s responsibility to manage all these 

hardware resources so as to complete the requests from upper layer software (USBD). 

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT313H.pdf


 

 Copyright © 2012 Future Technology Devices International Limited 6 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

2 FT313H hardware access 

All FT313H hardware access is through register access, this is true also for built-in memory access. The 

register map of the FT313H is shown in section 2.1. 

The first set of registers contains the EHCI operational registers set which is located from address 0 to 
30h. This register set is a customized version of the standard EHCI register set (support one downstream 
port and remove 64 bit support, etc.) with register’s offset unchanged. 

The second set of registers is the configuration registers which contain functions like hardware reset, 
hardware mode setup, internal memory access etc. It also contains registers for power management 
support. 

The third set of registers are FT313H specific interrupt registers; please note that EHCI operational 
register has its own interrupt control registers. 

Finally, there are also USB testing registers which are used for supporting USB compliance testing. 

 

2.1 FT313H register map 

FT313H Register Map is shown in Table 1, for detailed description of each register; please refer to chapter 
5 of the FT313H Datasheet [3]. 

 
Table 1: FT313H Registers Map 

Address  Register  Reset value  Description 

EHCI operational register 

00h HCCAPLENGTH 01000010h Capability register 

04h HCSPARAMS 00000001h Structural parameter register 

08h HCCPARAMS  00000006h Capability parameter register 

10h  USBCMD  00080B00h USB command register 

14h  USBSTS  00001000h USB status register 

18h USBINTR  00000000h USB interrupt enable register 

1Ch  FRINDEX  00000000h Frame index register 

24h PERIODICLISTADDR  00000000h Periodic frame list base address register 

28h ASYNCLISTADDR  00000000h Current asynchronous list address register 

30h  POSTSC  00000000h Port status and control register 

Configuration register 

34h  EOFTIME  00000041h EOF time and asynchronous schedule sleep timer 

register 

80h  CHIPID  03130001h Chip ID register 

84h  HWMODE  00000000h HW mode control register 

88h  EDGEINTC 0000001Fh Edge interrupt control register 

8Ch SWRESET 00000000h SW reset register 

90h MEMADDR 0000h Memory address register 

92h DATAPORT 0000h Data port register 

94h DATASESSION  0000h Data session length register 

96h  CONFIG  1FA0h Configuration register 

98h  AUX_MEMADDR  0000h Auxiliary memory address register 

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT313H.pdf


 

 Copyright © 2012 Future Technology Devices International Limited 7 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

Address  Register  Reset value  Description 

9Ah  AUX_DATAPORT  0000h Auxiliary data port register 

9Ch  SLEEPTIMER  0400h Sleep timer register 

Interrupt register 

A0h  HCINTSTS  0000h  Host controller interrupt status register 

A4h  HCINTEN  0000h  Host controller interrupt enable register 

USB testing register 

50h  TESTMODE  00000000h  Test mode register 

70h  TESTPMSET1  00000000h  Test parameter setting 1 register 

74h  TESTPMSET2 00000000h  Test parameter setting 2 register 

 

2.2 Chip Access Mode Select 

FT313H can function in either 16-bit mode or 8-bit mode; the default mode when FT313H powered up is 
16-bit mode.  

The 16-bit or 8-bit mode selection is completed by clearing or setting DATA_BUS_WIDTH bit (bit 4) in 
SWRESET register (8Ch). This register’s valid bits are from bit 0 to bit 7, thus it could be accessed 
correctly either from a 16-bit system or 8-bit system. 

Chip data bus width selection should be done during the initialization phase, and should not change 
during the software execution. 

 

2.3 Register Access 

After the chip access mode is set as described in section 2.2, the application software can access other 
registers to complete further chip operations.  

Accessing registers with data wider than the mode selected (8/16 bit data) will require multiple accesses 
starting at the lowest address. 

For example, if the chip is in 8-bit mode and a 32 bit long register read is needed, the register should be 
read 4 times from the lowest address to the highest address of the register offset. 

 

  



 

 Copyright © 2012 Future Technology Devices International Limited 8 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

2.4 Memory Access 

FT313H built-in memory access is completed by manipulating three registers, i.e. MEMADDR (90h) 
register, DATAPORT (92h) register and DATASESSION (94h) register. Actual procedures are in Figure 3. 

 

START

Is 16-bit Mode?

Is data length an 

even number?

Yes

Is memory read 

operation?

Yes

Write value of data 

length to 

DATASESSION register 

with bit 15 set to 1

Yes

No

Increase data 

length by 1 to 

make it an even 

number

No

Write value of data 

length to 

DATASESSION register

No

Write value of memory 

offset to MEMADDR 

register

Set read/write offset as zero in 

system memory buffer

Increase the system memory buffer 

offset by 1 in 8-bit mode, and 2 in 

16-bit mode; 

Exit loop if offset reaches memory 

access data length

END

Read/Write DATAPORT 

register

Parameters needs:

1. Data length of memory access in bytes

2. Start offset in FT313H internal memory

3. FT313H data bus width setting (16-bit or 8-bit)

4. Pointer to system memory buffer as data source 

(write) or destination (read)

 
Figure 3: FT313H Memory Access Flowchart 



 

 Copyright © 2012 Future Technology Devices International Limited 9 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

First, set the length and direction (read or write) of the data transmission session by writing the length 

value to the DATASESSION register, and if data session is read, bit 15 must be set to 1, otherwise 0; As 
FT313H has 24 kilobytes built-in memory, the range of data length is from 0 to 6000h. 

Second, set the address where memory access should start by writing the address to MEMADDR register. 
Please note that addresses start from offset 0000h and up to 5FFFh. It is software’s responsibility to 
make sure that the address plus the data length in the previous step will NOT exceed the total memory 

range of the FT313H’s built-in memory. 

Third, read or write the actual payload by accessing the DATAPORT register repeatedly, until all data is 
read out or written into the FT313H built-in memory. The amount of data that each read or write 
operation to the DATAPORT register can convey depends on the chip access mode, that is, if chip is in 16-
bit mode, 2 bytes will be read or written each time, while 1 byte will be read or written if the chip is in 8-
bit mode. Thus in 16 bit mode, the software needs to make sure that the data session length is even and 

starts from an even number offset. 

One important point to document: one memory access session cannot be interrupted by another memory 
access session; access control mechanism (such as mutex) should be used to make the memory access 
atomic. 

Also, both the DATASESSION register and MEMADDR register are 16 bit registers, and must follow the 
register access method as described in section 2.3; while DATAPORT register’s width depends on the chip 
access mode. 

 

2.5 Summary 

As both register and built-in memory access are fundamental operations, it is a good practise to 
implement a set of API functions which are capable of reading/writing different length registers as well as 
memory sessions by calling one of these API functions. 

All descriptions from this point assume that such a set of API functions are properly implemented, and  

low level access details will not be repeated. 

 



 

 Copyright © 2012 Future Technology Devices International Limited 10 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

3 Chip initialization sequence 

After the chip is powered, software needs to initialize FT313H so that it will be ready for new 

insertions and other services. The general initialization sequence of the FT313H is shown in  

Figure 4: . 

Reset FT313H by setting 

RESET_ALL bit in 

SW_RESET register

Waiting for 200 

milliseconds for 

completion of reset 

operation

Set chip data bus width 

to 8-bit mode if needed

Chip hardware mode 

setup

Optional BCD mode 

setup

Vbus turn on

Initialize EHCI data 

structure

Reset EHCI host core

Start FT313H USB host 

and enable required 

interrupts

START

END

 
 

Figure 4: FT313H Initialization Sequence Flowchart 

The initialization sequence is  described as following. 

 

3.1 Set chip access mode and reset the chip 

Upon system power on, software needs to reset the FT313H chip, so that chip will be in a known state, 

this is done by setting bit RESET_ALL (bit 0) to 1 in the SWRESET register. A 200 milliseconds delay must 
be applied after register writing to make sure that the chip reset is complete. 



 

 Copyright © 2012 Future Technology Devices International Limited 11 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

Based on platform requirements, software then needs to set the chip access mode correctly (refer to 

section 2.2), and complete the first step of chip initialization. 

3.2 Chip hardware mode setup and turn on VBus 

Software must then set the hardware mode, such as interrupt type, i.e. edge trigger or level trigger; 
interrupt polarity etc. Software should also set the interface lock and enable the global interrupt. All of 

the above operations are implemented by setting corresponding bits in the HWMODE register (84h). For 
details of related register settings refer to section 5.3.3 and section 5.3.4 of the FT313H datasheet [3]. 

The software should now turn on VBus, as VBus is off by default. The method to turn on the VBus is by 
clearing the VBUS_OFF bit (bit 7) in CONFIG register (96h). Software could also, optionally set the BCD 
module to the expected mode when turning on VBus. Details in next section. 

Next, the software could read the chip ID register (80h) to verify that low level access is ok as well as 

getting the FT313H hardware revision information. 

 

3.3 Optional battery charging function initialization 

Battery charging function initialization is accomplished by programming certain bits in CONFIG register 
(96h) before turning on VBus. 

This feature depends on system requirements. If the BCD function is not needed, software should disable 

the function by clearing the BCD_EN (bit 5) in CONFIG (96h) register, please note that the BCD function 
is enabled by default. 

If the BCD function is needed, software should keep the BCD_EN bit as one and, based on system 
requirements, BCD mode could be set either by hardware pins (CPE0 and CPE1) or software. If the BCD 
mode is hardware or pin configured, software should set the BCD_MODE_CTRL (bit 15) in CONFIG 
register as 0; otherwise, software should set the BCD_MODE_CTRL bit as 1 and further set the BCD mode 
by programming BCD_MODE field (bit 14:13) in CONFIG register.  

Supported modes are SDP, DCP or CDP, and value is 0h, 1h or 3h respectively. 

After the BCD function related values are determined, software could turn on the VBus together with all 
the BCD function related bits by writing the appropriate value to CONFIG register. 

 

3.4 Initiailze data structure for USB host controller 

To prepare the FT313H working as a USB host controller, the EHCI related data structure must be 
initialized. Firstly, based on system decisions, software needs to allocate one segment of 4096 bytes 
aligned memory as a periodic list in the FT313H build-in memory. As FT313H has a limited number of 
4096 bytes aligned memory addresses, it is a good idea to use memory offset 0 as the start address for 
the periodic list. Software also needs to initialize all the vectors in the periodic list as 00000001h (the 
EHCI null pointer) to show that there is no active periodic transfer so far. 

Software also needs to allocate one queue head (qH) and its associate queue element transfer descriptor 

(qTD) and mark it as the head for the asynchronous schedule list. 

Software must then send a software reset to the FT313H by setting HC_RESET bit (bit 1) to 1 in the 
USBCMD (10h) register, and then poll this bit until its value is cleared by hardware. 

After that, based on the system requirements, software must also set a desired interrupt threshold and a 

periodic frame list size in the USBCMD (10h) register and make sure that INT_OAAD, PSCH_EN, 
ASCH_EN and HC_RESET bits are all cleared. Software can then start the host controller by setting the 
RS bit to 1 in the USBCMD register. 

Software also needs to enable required interrupts, such as the port change interrupt enable and USB 
interrupt enable, by setting corresponding bits in the USBINTR (18h) register. 

At this time, the USB host is already in a working state; SOF packets will be getting sent out and the 
FT313H is able to detect peripheral insertion.  

Further software processes serviced by the FT313H are described in the next section. 

 

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT313H.pdf


 

 Copyright © 2012 Future Technology Devices International Limited 12 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

4 USB host operations 

This section mainly describes the FT313H’s behaviour as a USB host. As the FT313H is compatible with 

EHCI, most of the behaviour is quite similar to that of an EHCI host. In this section, it is assumed that 
readers are familiar with the EHCI specification and this section will provide an overview of the FT313H’s 
behaviour with an emphasis on important points as well as the unique parts of the FT313H. 

 

4.1 Root hub control 

4.1.1 USB peripheral insert and remove 

After the FT313H completes the initialization sequence, a USB peripheral device insertion will generate a 

port change interrupt which is indicated by PO_CHG_DET bit (bit 2) in USBSTS register (14h) becoming 
one and bit CONN_STS (bit 0) in PORTSC register (30h) also becoming one. Software can detect that a 

new device is inserted from these two bits changing via an interrupt (if interrupt is enabled) or polling 
mechanism. 

After software detects a peripheral insertion, it should clear the PO_CHG_DET bit in USBSTS register by 
writing a one into the same bit in the register. Further processing of the peripheral insertion event such 
as port reset and speed negotiation will be discussed in section 4.1.2. 

When a USB peripheral is removed from the FT313H downstream port, a port change interrupt will be 
generated. This time the CONN_STS bit in PORTSC register will become zero. 

 

4.1.2 USB port reset and speed negotiation 

After software detects the new USB peripheral insertion and before a full USB enumeration starts, 
software has to enable the port and determine the speed of the inserted peripheral first. 

This is done by the port reset operation; the actual procedure is as follows: 

 

1. Stop the host controller driver by clearing RS bit in USBCMD register (10h) and make sure that 
HCHALTED bit (bit 12) is set in USBSTS (14h)register. 

 

2. The software must write a one to PO_RESET bit (bit 8) in PORTSC register(30h) with PO_EN bit 
cleared (as software cannot forcefully enable a port) to start the port reset operation. 

 
3. After that, a 50 milliseconds delay is expected, before software stops the port reset operation by 

clearing the PO_RESET bit in PORTSC register. Software needs to further check that PO_RESET bit is  
cleared which may take a few hundred microseconds. 

 
4.  Software should check whether PO_EN bit (bit 2) in PORTSC register (30h) is set by hardware; if 

not, this means something wrong has happened and port reset failed. Otherwise, software should 
restore the RS bit to 1 and make sure that HCHALTED bit is cleared. 

 
5. Software should now clear the PO_EN_CHG bit (bit 3) if the port is enabled successfully. Next, 

software should check what speed class the newly inserted USB peripheral belongs to. This is done by 

checking the HOST_SPD_TYP field (bit 6 and 7) of HWMODE register (84h). The value “2”, “0” and 
“1” represents “high speed”, “full speed” and “low speed” respectively. 

 
6. If the speed value is read successfully, port reset is complete, and software can start the 

enumeration operation based on information received from the port reset operation. 

 

 

  



 

 Copyright © 2012 Future Technology Devices International Limited 13 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

4.2 USB transfer schedule 

4.2.1 Asynchronous transfer schedule 

4.2.1.1 General information on asynchronous transfer 

USB control transfer and bulk transfer belong to the asynchronous transfer type. The actual timing of the 
transfers being scheduled is determined by the host controller hardware. The software’s job is to submit 
the requirements of the asynchronous transfer and make sure that dynamic USB transfer request 

submissions will not interfere with host controller operation. . 

In general, software submits request for asynchronous transfer by adding items to the asynchronous list 
which resides in the FT313H’s built-in memory. The general format for the  asynchronous schedule list is 
shown in Figure 5.  

 

 
Figure 5: General Format of Asynchronous Schedule List 

 

The Asynchronous schedule traversal is enabled or disabled via the Asynchronous Schedule Enable bit in 
the USBCMD register (10h). If the Asynchronous Schedule Enable bit is set to a zero, then the host 
controller simply does not try to access the asynchronous schedule via the ASYNCLISTADDR register 
(28h). Likewise, when the Asynchronous Schedule Enable bit is a one, then the host controller does use 

the ASYNCLISTADDR register (28h) to traverse the asynchronous schedule. Modifications to the 
Asynchronous Schedule Enable bit are not necessarily immediate. Rather the new value of the bit will 
only be taken into consideration the next time the host controller needs to use the value of the 
ASYNCLISTADDR register (28h) to get the next queue head. 

The Asynchronous Schedule Status bit in the USBSTS register (14h) indicates status of the asynchronous 
schedule. System software enables (or disables) the asynchronous schedule by writing a one (or zero) to 
the Asynchronous Schedule Enable bit in the USBCMD register (10h). Software then can poll the 

Asynchronous Schedule Status bit to determine when the asynchronous schedule has made the desired 
transition. Software must not modify the Asynchronous Schedule Enable bit unless the value of the 
Asynchronous Schedule Enable bit equals that of the Asynchronous Schedule Status bit. 

 

4.2.1.2 qH and qTD handling 

Asynchronous transfers are carried by qH and qTD only. Practically, each (control or bulk) end point on a 
USB peripheral is represented in the FT313H by a qH and the payload of each end point is carried by qTD. 

qHs are linked through the Queue Head Horizontal Link Pointe to form a link list and there is one special 
qH with its H bit (bit 15) in queue head Dword 1 set as 1 to indicate that it serves as the head of the 
asynchronous list, thus software must be sure that there should be only one qH with its H bit set as 1. 

One qH could have several qTDs, and this is most commonly used for control transfer. Practically 
speaking, a control transfer is served by 3 cascaded qTDs, first one carries SETUP token, second one 
carries data phase, while last one carries status phase. If there is no data phase for this control transfer, 
the second qTD is not needed. 



 

 Copyright © 2012 Future Technology Devices International Limited 14 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

One important point to consider:  any qH needs at least one additional qTD, normally referred to as a 

dummy qTD. This qTD does not carry any actual payload and is identified by the Halted status bit (bit 6) 
in its token field being set to 1, which serves as an indicator to the host controller hardware as the end of 
the qTD list. Its main usage is for adding more qTDs to the qH safely. When the software needs to add 
more qTD(s) to a given qH, it must add the new qTD(s) by following this procedure (assume the qTD(s) 
list that needs to be added is already linked together by the next qTD pointer field): 

 

1. Save the content of the token field of the first qTD to be added somewhere that software could 
retrieve back later. E.g. to a temporary variable. 

 

2. Change the token of the first qTD so its Halted bit is set as 1 and all other bits are zero, and copy 
the content of the first qTD to the dummy qTD, thus this qTD is still considered as dummy and 

hardware will NOT access this partially updated qTD and qTD(s) after it. 

 

3. Link the first qTD to the last of the qTD of the newly qTD list, if only one qTD is added, this qTD 
will be added after the dummy qTD that has just been updated from the previous step. Re-
initialize this qTD so that it will become the new dummy qTD. 

 

4. Restore the token value store in step 1 to the previous dummy qTD’s token field to complete the 

qTDs appending operation, and hardware will start processing the newly added qTD when its qH 
is scheduled. 

After qTD is executed by hardware, it could be unlinked from the qH that it belongs to, and makes it 
possible to be reused by the same or different qH again, however, a dummy qTD must be kept all time 
until its qH is freed (mainly due to the peripheral being unplugged and the end point no longer exists). 

 

4.2.2 Periodic transfer schedule 

USB interrupt and isochronous transfers belongs to the periodic transfer type which is characterised as  

transfers occurring repeatedly based on a certain period. Periodic transfers are indicated by different 

transfer descriptors, high speed isochronous transfer is indicated  by iTD, while full and low speed 
isochronous transfer are indicated by siTD. Interrupt transfers of all speeds are carried-out by qH and 
qTD which are also used by asynchronous transfers as described in prior sections. 

For FT313H, the transaction length field in iTD can be modified by both software and hardware. , 
Software writes a value in this field to indicate the maximal length possible for the  isochronous 
transaction. After this transaction is scheduled, the hardware will modify the value of the transaction 

length field to report the actual bytes of the payload received. Per the  EHCI specification, the hardware 
will update this field to the actual number of bytes received, however, with the FT313H, hardware will 
update this field to the remaining  value ( i.e. how many bytes that this transaction is still able to 
receive). The actual number of bytes received is the difference of this number and previous software 
programmed value. This behaviour is the same as qTD’s process for similar fields. 

 



 

 Copyright © 2012 Future Technology Devices International Limited 15 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

 
Figure 6: General format for periodic schedule list 

 

Unlike asynchronous transfer, periodic transfer is software scheduled. Software needs to control the exact 

timing of the periodic transfer based on timing requirements of the interrupt or isochronous transfer 
properties. 

The actual scheduling is driven through the periodic frame list, which is a pointer table of 1024, 512 or 
256 elements based on the configuration determined by software as shown in Figure 6. Each entry in the 
periodic frame list represents one USB frame (in the timing perspective). The content is a pointer to a 
transfer descriptor (iTD etc.) list that the hardware should execute at the given frame (and also micro-

frame for high speed transfers). If the entry in the periodic frame list points to an EHCI NULL pointer, it 

means that there is no periodic transfer needs scheduling at this USB frame. 

Periodic schedule traversal is enabled or disabled by the Periodic Schedule Enable bit (bit 4) in USBCMD 
register. If Periodic Schedule Enable bit is set to a zero, then the host controller simply does not try to 
access the periodic schedule via the PERIODICLISTADDR register (24h). Likewise, when the Periodic 
Schedule Enable bit is a one, then the host controller does use the PERIODICLISTADDR register (24h) to 
traverse the periodic schedule. When both periodic and asynchronous schedule are enabled, periodic 

schedule will always happen first in any micro-frame. It is the software’s responsibility to ensure that 
there is no over allocation of periodic transfer. 

As software will take the full control of the periodic transfer timing, software needs to reserve enough 
time before the actual scheduling occurs. This is performed by a read to the FRINDEX register to 
determine the current frame and micro-frame the host controller is currently executing. Exactly how long 
the reserved time should be depends on the specific platform, such as processing speed and interrupt 
latency as well as the periodic transfer’s timing and amount of communication buffer requirements. 

 

4.2.3 Summary and further readings 

USB transfer scheduling for EHCI-compatible host controller FT313H involves many additional elements. 
For more details, please refer to the EHCI specification [2] and reference source code. 

 

4.3 Power management 

FT313H supports power management features so that power consumption can be optimized.  

FT313H power management function consists of two parts, chip level power management and port level 
power management. 



 

 Copyright © 2012 Future Technology Devices International Limited 16 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

 

4.3.1 FT313H chip level power management 

FT313H chip level power management function is used when the higher levels of software determine that 
the FT313H should be put into suspend mode, to save power, and when higher levels of software 
determine the FT313H should resume  operation. 

Chip level power management is comprised of  three main functions: chip suspend, chip resume, and 
(external) wakeup functions. 

4.3.1.1 Chip suspend 

Chip suspend is triggered by upper layer software when it believes that the FT313H should be put into 
suspend mode to save power. The actual steps to put FT313H into suspend mode are as follows: 

 
1. Stop the asynchronous schedule as well as periodic schedule by clearing ASCH_EN and PSCH_EN 

bits in command register. 
2. Complete all the pending activities in FT313H’s local memory 

3. Stop FT313H by clearing the RS bit in command register 
4. If the USB downstream port is enabled, suspend the port by setting the PO_SUSP bit in PORT_SC 

register to 1 and wait for 5 milliseconds. This ensures USB peripherals being able to detect the 
suspend signal from the FT313H 

5. Switch off the FT313H’s oscillator, host controller clock and internal PLL by clearing the OSC_EN, 
HC_CLK_EN and PLL_EN in CONFIG register. 

6. Set the corresponding bits in HCINTEN register according to the resume or wakeup events that 

are needed, if OC is also needed as wakeup events, PORT_OC_EN (bit 6) in CONFIG register must 
also be set as well as OCINT_EN (bit 6) in HCINTEN register 

7. Finally, clear the U_SUSP_N bit in the EOTTIME register to put the chip into suspend mode 

 

After that, unless chip resume is needed, no register read operation should be done to FT313H any more, 
as this will wake up the chip from suspendmode. 

4.3.1.2 Chip resume 

Chip resume is also triggered by upper layer software when it believes that FT313H should be restored to 
active mode; for example, when a user presses a button to wake up the system. 

The resume operation starts with a dummy read of the FT313H, the register dummy read serves as a 
resume signal to the FT313H that is in suspend mode. It is recommended to use a single read of the 
software reset register (Read only lower 8 bits in 8-bit mode) to generate the resume signal and apply a 
10 milliseconds delay after the register dummy read. 

Note: If the clock ready interrupt is enabled, this interrupt could trigger within 10 milliseconds. The 
software needs to ensure that this interrupt will not interfere with the resume operation. 

Upon the dummy read operation, FT313H’s clock ready interrupt will be triggered. Upon receiving this 
interrupt, software should turn on transceiver by set U_SUSP_N bit in EOTTIME register to ONE. Software 
should read back the content of the register after writing the appropriate value to the register to make 
sure that U_SUSP_N bit is set already. 

At this time, the FT313H hardware is active again, and the software needs to restore it to the proper 

status prior to the suspend event.  

Actual procedure is as follows: 

 
1. Disable EHCI interrupt so that restore operation will not be interrupted unnecessarily 
2. Restore register PERIODICLISTADDR and ASYNCLISTADDR to their original value 
3. Restore previous command register value 
4. Resume port if the port has been suspend before by set the F_PO_RESM bit in port status register 

and clear it after 20 milliseconds 
5. Set the ASCH_EN and/or PSCH_EN bits if there is active transfer before suspend 



 

 Copyright © 2012 Future Technology Devices International Limited 17 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

4.3.1.3 External wakeup 

The FT313H may return to a working or active mode as a result of external events, which we refer to as 
wakeup. 

FT313H support several kinds of events as wakeup events, they are: 

 
 USB peripheral connection/disconnection 

 USB peripheral remote wakeup 
 OC (over current) 

If the FT313H is to woken up from external events, the software must set the corresponding bit(s) in the 
HCINTEN register. Bit WAKEUPINT_EN governs wakeup on connection/disconnection; while bit 
REMOTEWKINT_EN governs remote wakeup, and bit OCINT_EN governs over current wakeup.  The 
software must set any or all of these three bits according to the system configuration before putting the 

FT313H to suspend. 

Unlike resume operation, the wakeup operation is started from an interrupt service routine (ISR). When a 

hardware wakeup event happens, FT313H’s interrupt handler will be called. In the FT313H interrupt 
handler, the following operation should be executed: 

 
1. Read the value of register HCINTSTS, and mask it with the value of register HCINTEN 
2. If result is non-zero, clear the interrupt status by writing the masked result back to HCINTSTS 

register 
3. Check and make sure CLKREADY bit is also set in HCINTSTS register 
4. After that, execute the same sequence as the resume operation 

For OC triggered wakeup, special processing is needed as OC is considered an abnormal case and 
requires shutting down the USB bus. Upon getting the OC event, software should set bit VBUS_OFF to 1 
in CONFIG register to turn off the VBUS and produce some alert message if possible. 

 

4.3.2 FT313H port level power management 

In certain circumstances it is not necessary to suspend the FT313H chip, instead it is only required to 

suspend or resume the USB downstream port of the FT313H, e.g. when executing USB compliance tests. 
With port suspend only, the power consumption will not reduce much (as chip is still active), however, 
port resume will take much less time than the chip suspend case. 

Following sections will describe the downstream port power management related operations. 

 

4.3.2.1 Port suspend 

To suspend the downstream port only, software should first check whether the port is enabled, and not 
currently under reset operation. 

If the above check passed, software could suspend the port by setting PO_SUSP bit in the port status 
register with the PO_EN_CHG and CONN_CHG bits cleared. 

 

4.3.2.2 Port resume 

To resume the downstream port, software should first check whether the port is enabled, not in reset 

operation and is in suspend mode. 

If the above check passed, the software could start the port resume operation by setting F_PO_RESM bit 
in the port status register with the PO_EN_CHG and CONN_CHG bits cleared. 

Port resume signal needs to last at least 20 milliseconds and software has to guarantee the timing. After 
20 milliseconds have passed, software will complete the port resume by clearing F_PO_RESM bit with 
PO_EN_CHG and CONN_CHG bits set as zero in the port status register. Software must then read out the 
value of port status register to make sure that F_PO_RESM bit is really cleared. 

 



 

 Copyright © 2012 Future Technology Devices International Limited 18 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

4.4 Interrupt handling 

The FT313H host controller supports a few interrupt sources which could be categorized into two 
categories, EHCI related interrupt and FT313H specific interrupt. 

 

4.4.1 EHCI related interrupts 

EHCI related interrupt is mainly about USB transfer scheduling status, such as one previously scheduled 

transfer has completed or new USB peripheral is inserted or unplugged. Software needs to take 
appropriate actions based on the nature of the interrupt. For example, a USB peripheral insertion 
interrupt (PO_CHG_DET) should further trigger port reset and speed negotiation operations; and a 
USB_INT interrupt will lead to a full scanning of all previously scheduled descriptors to find out which 
descriptor has been completed and appropriate follow up actions (e.g. continue programming next 
segment) should be applied also. 

In the USBCMD register, there is a field named the interrupt threshold control, which is bit 16 to bit 23. 

When the value of this field is set as 01h, the minimal possible value, in EHCI spec, this means the 
interrupt threshold is 1 micro-frame or 125 µS; however, for FT313H, this value means there is no 
limitation to the interrupt interval, hardware will generate interrupt as soon as any interrupt event 
happens. 

Due to this, when software selects the minimal value, software must prepare for the scenario that 
another interrupt may happen during the execution of the interrupt handler for the previous interrupt, 

which may cause an interrupt missing under certain conditions. The solution to this is: after processing 
the current interrupt, the software interrupt handler should read the EHCI interrupt status and enable 
register again to find out whether there were new interrupts received during the previous process. If an 
interrupt was received, the software must continue to process the new interrupt until there are no more 
interrupts pending. 

 

4.4.2 FT313H interrupts 

FT313H has its own interrupts which are mainly related to FT313H power management and those that 
could help software achieve some special goals. There are two registers related to FT313H interrupt, i.e. 

HCINTSTS (A0h) and HCINTEN (A4h), the former contains the interrupt status bits while the latter 
contains the corresponding enable bits. 

Important ones are described as following: 

4.4.2.1 Power management related interrupts 

Bits 3, 5, 6, and 7 of both HCINTSTS and HCINTEN registers control the power management behaviour of 
the FT313H such as which event could be used as a wakeup event. For detailed description on how to use 
these bits could refer to section 4.3.  

 

4.4.2.2 SOF and uSOF interrupts 

Bits 0 and 1 control the SOF and uSOF interrupt respectively. These two interrupts will be triggered 
periodically if enabled, which is good for initial software debugging. Software will always have an access 

point to hardware through the interrupt handler. 

 

4.4.2.3 BUSINACTIVE interrupt 

Bit 4 of HCINTSTS and HCINTEN is used for reporting USB bus activities. This interrupt will be triggered if 
FT313H’s USB bus is in idle mode for more than certain amount of time, software could use this feature 
to have a smarter way of controlling FT313H’s power state to achieve better power efficiency. The bus 
inactive time is configured though SLEEP_TIMER register (9Ch). 

 



 

 Copyright © 2012 Future Technology Devices International Limited 19 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

5 Reference Source Code 

 

Author Reference Code 

Yang Chang FT313H-HCD_Linux-1.0.tar.gz (must align with actual file name) 

  

  

  

  

  



 

 Copyright © 2012 Future Technology Devices International Limited 20 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

6 FTDI Chip Contact Information 

Head Office – Glasgow, UK 

 
Unit 1, 2 Seaward Place, Centurion Business Park 
Glasgow G41 1HH 
United Kingdom 
Tel: +44 (0) 141 429 2777 
Fax: +44 (0) 141 429 2758 
 

E-mail (Sales) sales1@ftdichip.com 

E-mail (Support) support1@ftdichip.com 
E-mail (General 
Enquiries) 

admin1@ftdichip.com 

Web Site URL http://www.ftdichip.com 
Web Shop URL http://www.ftdichip.com 

 
Branch Office – Taipei, Taiwan 
 
2F, No. 516, Sec. 1, NeiHu Road 
Taipei 114 
Taiwan , R.O.C. 
Tel: +886 (2) 8797 1330 

Fax: +886 (2) 8751 9737 

E-mail (Sales) tw.sales1@ftdichip.com 

E-mail 
(Support) 

tw.support1@ftdichip.com 

E-mail (General 
Enquiries) 

tw.admin1@ftdichip.com 

Web Site URL http://www.ftdichip.com 

 

Branch Office –  Oregon, USA 

 
7130 SW Fir Loop 
Tigard,  OR, USA 97223-8160 
Tel: +1 (503) 547 0988 
Fax: +1 (503) 547 0987 
 

E-Mail (Sales) us.sales@ftdichip.com 

E-Mail (Support) us.support@ftdichip.com 
E-Mail (General Enquiries) us.admin@ftdichip.com 
Web Site URL http://www.ftdichip.com 

 
Branch Office – Shanghai, China 
 

Room 1103, No666 West Huahai Road, 
Shanghai, 200052 
China 
Tel: +86 21 62351596 
Fax: +86 21 62351595 
 

E-mail (Sales) cn.sales@ftdichip.com 

E-mail (Support) cn.support@ftdichip.com 
E-mail (General 
Enquiries) 

cn.admin@ftdichip.com 

Web Site URL http://www.ftdichip.com 

 

 

 
Distributor and Sales Representatives 

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and 

sales representative(s) in your country. 

 
 
System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices 

International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance 

requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other 

materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer 

confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI 
devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold 

harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without 

notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole 

nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material 

or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 

Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640 

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/
http://ftdichip.com/


 

 Copyright © 2012 Future Technology Devices International Limited 21 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

7 Appendix A – References  

Document References 

[1] Universe Serial Bus Specification, Revision 2.0 
[2] Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0 
[3] FTDI FT313H Datasheet 

 

Acronyms and Abbreviations 

Terms Description 

USB Universe Serial Bus 

EHCI Enhanced Host Controller Interface 

BCD Battery Charging Device 

SDP Standard Downstream Port 

DCP Dedicated Charging Port 

CDP Charging Downstream Port 

  

 

 

 

http://www.usb.org/developers/docs/usb_20_102512.zip
http://www.intel.com/technology/usb/download/ehci-r10.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT313H.pdf


 

 Copyright © 2012 Future Technology Devices International Limited 22 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

8 Appendix B – List of Tables & Figures 

List of Tables 

Table 1: FT313H Registers Map .................................................................................. 6 

 

List of Figures 

Figure 1: USB host software architecture ................................................................... 4 

Figure 2: Block diagram of FT313H ............................................................................. 5 

Figure 3: FT313H Memory Access Flowchart............................................................... 8 

Figure 4: FT313H Initialization Sequence Flowchart................................................. 10 

Figure 5: General Format of Asynchronous Schedule List ......................................... 13 

Figure 6: General format for periodic schedule list ................................................... 15 

 



 

 Copyright © 2012 Future Technology Devices International Limited 23 

Document Reference No.: FT_000764 

FT313H Programming Guide  Application Note 226  
Version 1.1 

Clearance No.: FTDI# 319 

9 Appendix C – Revision History 

Document Title:   FT313H Programming Guide 

Document Reference No.: FT_000764 

Clearance No.:    FTDI# 319 

Product Page:   http://www.ftdichip.com/FTProducts.htm 

Document Feedback:  AN_226_FT313H_Programming_Guide 

 

 

Version 1.0 Initial Release       OCT 2012 

Version 1.1 Formatting tidy up/added flow charts    NOV 2012

 

mailto:docufeedback@ftdichip.com?subject=AN_226_Version1.1

