
Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits

or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com
Copyright © 2012 Future Technology Devices International Limited

Application Note

AN_225

FT12 Series Firmware
Programming Guide

Version 1.0

Issue Date: 2012-09-25

This document provides guidelines to firmware developers for developing
microcontroller applications with FT12 series devices as a USB device
peripheral.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 1

 Copyright © 2012 Future Technology Devices International Limited

Table of Contents

1 Introduction .. 2

2 Overview of the FT12 Series Device Architecture .. 3

3 Interfacing FT12 Series Devices .. 4

3.1 Interfacing using parallel I/O lines .. 4

3.2 Interfacing using SPI .. 5

4 Chip Initialization and Configuration .. 6

5 FT12 Device Interrupt handling .. 7

6 USB Device Enumeration .. 9

7 Example Firmware .. 10

7.1 LPC1114 Microcontroller .. 10

7.2 LPCXpresso Target Board .. 11

7.3 UMFT12XEV Evaluation Kit ... 11

7.4 LPCXpresso IDE .. 12

7.5 Firmware directory structure .. 13

7.6 The Reference Firmware ... 14

7.7 Recommendations for porting to other MCUs ... 17

8 Contact Information .. 18

Appendix A – References .. 19

Document References ... 19

Acronyms and Abbreviations .. 19

Appendix B – List of Tables & Figures ... 20

List of Figures .. 20

Appendix C – Revision History .. 21

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 2

 Copyright © 2012 Future Technology Devices International Limited

1 Introduction

FT12 series of integrated circuits (FT120, FT121 and FT122) are USB device controllers that can be
introduced into a microcontroller based system to provide the system with USB connectivity. FT12
devices provide the system designer with the flexibility to design USB devices of various
configurations, several numbers of interfaces and several endpoints of different types. USB devices
conforming to standard USB classes and vendor specific types can be developed using the FT12x
chip, meaning that, USB peripheral devices of various types such as Mass Storage, Human

Interface Device(keyboard/mouse/joystick), Printer, Communication Device Class(serial port), etc
can be developed using the FT12 series.

Figure 1-1: FT12x in a USB System

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 3

 Copyright © 2012 Future Technology Devices International Limited

2 Overview of the FT12 Series Device Architecture

Figure 2-1: FT12 Series Architecture

The above diagram provides a diagrammatic overview of the FT12 series architecture that is visible
to the programmer.

As it can be seen, the application processor interacts with the FT12x using two 8-bit registers, one
which is a command register and other is a data pointer. The data pointer incorporates an auto
increment logic, which means that the pointer automatically points to the next byte in the memory

once a data byte has been read.

Once the chip has been initialized and the endpoints have been configured, data from the host will
be transferred into the respective OUT endpoint buffers and an interrupt will be generated if
configured for. Similarly, when the application processor selects an IN endpoint and writes data to
it, that data is transferred by FT12x to the host when it receives an IN token in that endpoint, and
an interrupt is generated thereafter if configured for. Essentially the FT12x chip will format data

from the application processor into USB frames and transmit it to the USB host. It will perform

vice-versa when it receives a USB packet from the host.

Interface
logic to

application
processor

Command
Register

(8-bit)

Data
Pointer

(8-bit)

A0

DATA

EP0 Buffer

EP1 Buffer

EPn Buffer

USB
PHY

CONTROL LOGIC SIE

Buffer
Selector &

Index

Buffer Selector & Index

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 4

 Copyright © 2012 Future Technology Devices International Limited

3 Interfacing FT12 Series Devices

The FT12 series delivers two interface options, one that interfaces with the application processor
over parallel I/O lines, and one that interfaces over a Serial Peripheral Interface (SPI).
As it can be seen from figure 2, the FT12x has two memory locations that are visible to the user.
One is the command register; the other is the data pointer. A control line, A0, is present in FT120
and FT122 which can be used to select these memory locations.
For FT121, the A0 line is internal to the chip. Every SPI transfer begins with a command phase
followed by optional data read or write phases, depending upon the command. The chip internally

pulls the A0 line high during the first byte of the transfer and then pulls it low for the subsequent
bytes of the transfer. A new command cycle begins every clock after the Slave Select line has been
pulled low. Commands and data are grouped together as one SPI transfer if the SPI Slave Select
line is held low throughout.

3.1 Interfacing using parallel I/O lines

The application processor can read or write to the FT120/FT122 over parallel I/O using 8 data
lines, and two control lines, i.e. RD_N and WR_N. Some microcontroller chips will provide an
external bus compatible with this interface whereas others won’t. When a compatible external
peripheral I/O bus isn’t available, the GPIO lines may be used to toggle using firmware to emulate

such an external peripheral bus. Typical code to perform read/write would take the following form:

void WriteBuffer(bool A0, uint8 *buffer, uint32 size)
{
 uint32 i;
 SetPortOut(); //Sets the 8 GPIO lines connected to the 8 data lines of FT12x to output mode
 if(A0)
 SetA0(); //sets A0 line high
 else
 ResetA0(); //sets A0 line low
 for(i=0;i<size;i++)
 {
 SetDataLines(buffer[i]); // put data on bus
 Delay(DELAY_WR_SETUP); // write data setup time

//strobe WR_N
SetWriteLow();

 Delay(DELAY_WR); //PULSE WIDTH for WR_N low pulse should be 20nS (minimum)
 SetWriteHigh();
 }
}

void ReadBuffer(bool A0, uint8 *buffer, uint32 size)
{
 uint32 i;
 SetPortIn(); //Sets the 8 GPIO lines connected to the 8 data lines of FT12x to output mode

 if(A0)
 SetA0(); //sets A0 line high
 else
 ResetA0(); //sets A0 line low
 for(i=0;i<size;i++)
 {
 SetReadLow(); //assert RD_N

 Delay(DELAY_RD); //read data hold time
 Buffer[i]=ReadData(); //read the 8 bits from the bus
 SetReadHigh();
 }
}

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 5

 Copyright © 2012 Future Technology Devices International Limited

3.2 Interfacing using SPI

Interfacing with the FT121, the application processor can communicate using only one function

that will first send a command and then optionally read or write data. While writing the function
we have to make sure that the SPI Slave Select line isn’t toggled between the command and the
data phases.

void SPICommand(uint8 command, bool direction,uint8 *data, uint32 size)
{
 uint32 i;
 SetSSLow(); //start the command cycle by pulling the Slave Select low
 SPI_Write(command,1); //write 1 byte command
 If(size)
 {
 if(direction == DIRECTION_WRITE)
 SPI_Write(data,size);
 else
 SPI_Read(data,size);
 }
 SetSSHigh(); //signal the completion of the command cycle pulling the Slave Select high
}

The firmware can attempt to read the VendorID/ProductID/FTDID from the chip to ensure that the
connections between the FT12 device and the application processor have been established
correctly, and the read/write functions are functioning. Please refer to the datasheet of the IC to
obtain the command operational codes and the expected return values. Please note that these

commands can work before any initialization commands have been issued to the chip.
It is recommended to use a mutex or a spinlock along with the functions that read/write to the
FT12 device to ensure that data are not garbled due to the same set of function getting called from
another context.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 6

 Copyright © 2012 Future Technology Devices International Limited

4 Chip Initialization and Configuration

The chip will need to be initialized before it starts communicating over the USB bus. This is done
using the SetMode command. This command is accompanied by two data bytes, the first provides
various chip configuration parameters while the second sets the clock divisor for the output
clock(CLKOUT) of the chip. After this, optionally for FT120 and FT122, if the application processor
supports DMA data transfers then the DMA configuration can be set using the SetDMA command.

Once these have been done, if the chip is FT121 or FT122 then the default endpoint configuration
can be modified using the SetEndPointConfiguration command. The endpoint index 0 and 1 are
configured as control endpoint, with buffer size 16 and in enabled state by default, and tthis
cannot be modified.

Typical code for the initialization sequence may take the form:

void FT12x_Init(void)
{
 FT12x_SetMode(FT12X_NOLAZYCLOCK, FT12X_SETTOONE | FT12X_CLOCK_12M);//disconnect USB
 Delay(DELAY_100MS);

FT12x_SetMode(FT12X_ENDP_NONISO|FT12X_DP_PULLUP,
FT12X_SETTOONE|FT12X_CLOCKRUNNING|FT12X_CLOCK_12M);//connect USB

 #ifndef FT120 //this command applicable only for FT121 & FT122
 FT12x_SetEndpointConfig(ENDPOINT_2,1,1,3);
 FT12x_SetEndpointConfig(ENDPOINT_3,1,1,3);
 #endif

}

Other than the above, one also has to consider that typically the USB data will be handled by the
application processor based on interrupts. The firmware has to configure the interrupt pin
associated with the FT12x interrupt while the firmware configures the other interrupts and

peripherals connected to the application processor.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 7

 Copyright © 2012 Future Technology Devices International Limited

5 FT12 Device Interrupt handling

Once the chip has been initialized and the DP_PULLUP bit has been set using the SetMode
command, the USB host will start the enumeration sequence as shown below.

Figure 5-1: USB Enumeration

The first USB packet that the FT12x device will receive will be a SETUP packet which will be a part
of GetDeviceDescriptor. On receiving this packet the FT12x will generate an interrupt. When that

happens, the application processor should read the interrupt register in FT12x, on doing that it will
know that data has been received on endpoint 1. The handler for endpoint 1 should then issue the
ReadLastTransactionStatus command to find out if the packet was a SETUP packet and initialize
the control endpoint handler state machine to service a control request.
The interrupt service routine for FT12 device interrupt may take the following form:

void OnFT12xInterrupt()
{
 unsigned int interrupt_status;
 DisableFT12xInterrupt();//Disable the interrupt in the application processor that is connected to FT12x interrupt
 interrupt_status = FT12x_ReadInterruptRegister();//read which interrupt is it
 switch(interrupt_status & 0xFFFF) //service the interrupt
 {
 case INTERRUPT_EP0:
 ep0_txdone();
 break;
 case INTERRUPT_EP1:
 ep0_rxdone();
 break;
 case INTERRUPT_EP2:
 ep1_txdone();
 break;
 case INTERRUPT_EP3:
 ep1_rxdone();
 break;

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 8

 Copyright © 2012 Future Technology Devices International Limited

 ...
 ...
 ...
 }
 EnableFT12xInterrupt();
}

void ep1_txdone(void) //data written to the EP has been transferred to host; clear the interrupt
{
 unsigned char ep_last;
 ep_last = FT12x_ReadLastTransactionStatus(3); // Clear interrupt flag
}

void ep1_rxdone(void) //data received from host, read it into buffer
{
 unsigned char len;
 unsigned char ep_last;
 ep_last = FT12x_ReadLastTransactionStatus(2); // Clear interrupt flag
 len = FT12x_ReadMainEndpoint(buffer+byteCounterRx); //Read data from FT12x to local memory
 RaiseFlagToProcessData(); //Raise some flag to process the received data in another thread or idle loop
}

Other than data transfer, the FT12x also raises interrupts when the host suspends the bus,
performs a bus reset, or when the chip completes a DMA transfer. These conditions can be
checked for by testing the specific bit in the returned value of the ReadInterruptRegister
command, and then may be handled accordingly. For example, the USB device may be
programmed for power saving mode after it sees a suspend interrupt, or it may wish to flush its
buffers and reinitialize its buffer index after it receives a bus reset interrupt.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 9

 Copyright © 2012 Future Technology Devices International Limited

6 USB Device Enumeration

The first pair of endpoints(endpoint 0 and 1, or pipe 0) is a pair of control endpoints that receive
standard, class specific and vendor specific requests and respond to them. The USB device
enumeration requires only these two endpoints to complete the enumeration. Pipe 0 OUT is
endpoint number 1. A control transfer consists of a SETUP transaction followed by one or more
optional DATA (in or out) transaction(s), followed by a STATUS transaction as shown below

Figure 6-1: Control Transfer

An example of SETUP transaction can be seen in figure 3 where the standard USB request
GetDeviceDescriptor is serviced. Typically, the following is the sequence that a USB host will follow
to enumerate a device:

1) On detecting a USB device plugged into the bus, the host will issue a reset

2) Issue standard GetDeviceDescriptor request.
3) After the device transfers the first 8 bytes of the device descriptor, the host issues

another bus reset.
4) The host will now put the device into addressed state by sending the SetAddress

request. The device firmware should take the address sent by the host and set its own
address to this by using the FT12x SetAddressEnable command.

5) Then the host will ask for the entire device descriptor by issuing the

GetDeviceDescriptor request once again.
6) After that the host will request for device configuration by issuing the

GetConfigurationDescriptor request. Note that some hosts make this request in two
stages, first it requests for only the first 9 bytes of the Configuration Descriptor and
then it sends the request once again to get the entire descriptor. Also, depending upon
the intended functionalities of the device, the configuration descriptor can have many

sub descriptors like endpoint descriptors, interface descriptors, metadata/companion

descriptors, etc.
7) Lastly the host will issue the GetStringDescriptor request to obtain the manufacturer,

product and serial number strings.

SETUP
Transaction

SETUP packet

DATA packet

ACK packet

DATA Transaction

(optional)

IN/OUT packet

DATA packet

ACK packet

STATUS
Transaction

OUT packet

DATA packet

(Zero length)

ACK packet

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 10

 Copyright © 2012 Future Technology Devices International Limited

7 Example Firmware

FTDI is providing example firmware that runs on a LPC1114 microcontroller connected to FT12
series device. One such example connects to the USB host as a composite device having a CDC-
ACM serial port interface and a HID keyboard interface. When this device is connected to a host (a
windows PC), a loopback serial port appears on the PC. Any data written to this serial port will be
loopback back to the PC. An additional keyboard will also appear connected to the PC. This
keyboard uses two keys (press-buttons) and two LEDs of the UMFT12XEV Evaluation board. The

two keys and the LEDs correspond to CAPSLOCK and NUMLOCK of a normal keyboard.

Figure 7-1: USB interfaces of the example USB device firmware

Pipe Endpoint Direction Type Interface

0 0 OUT Control

1 IN Control

1 2 CDC-ACM Control

3 IN Interrupt

2 4 OUT Bulk CDC-ACM DATA

5 IN Bulk

3 6 HID

7 IN Interrupt

Figure 7-2: Endpoint map

7.1 LPC1114 Microcontroller

The LPC1114 is a low cost 32bit ARM Cortex-M0 CPU based microcontroller from NXP
Semiconductors. It has 8 kilobytes SRAM, 32 kilobytes flash and it can run at frequencies up
to 50MHz. The microcontroller features a serial wire debug, system tick timer, nested

vectored interrupt controller, 10-bit ADC, UART, SPI, I2C and WDT.

• USB-IF CDC-ACM class device(serial port)

• Data loopback

Interface 1:

CDC-ACM class

• USB-IF HID class device(keyboard)

• Only two buttons and LEDs corrosponding to
CAPSLOCK and NUMLOCK

Interface 2:

HID class

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 11

 Copyright © 2012 Future Technology Devices International Limited

7.2 LPCXpresso Target Board

Figure 7-3: LPCXpresso Target Board populated with LPC1114

Figure 7 shows a LPCXpresso Target Board populated with a LPC1114 microcontroller. The
part of the board to the left of the red line is NXP’s debugging hardware for LPC
microcontrollers. The board can actually be cut into two parts and the LPC1114 target in the
left of the red line can work independently if no debugging is required.

7.3 UMFT12XEV Evaluation Kit

Figure 7-4: UMFT12XEV Evaluation Kit

Binary images of the firmware can be downloaded to the board through the UART port, or

the left half of the LPCXpresso board(the debugger part) can be connected to CN1(8 pin
JTAG header on the extreme right in figure 8) to debug the LPC1114 on the UMFT12XEV
Evaluation Kit.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 12

 Copyright © 2012 Future Technology Devices International Limited

7.4 LPCXpresso IDE

The LPCXpresso IDE is an eclipse based integrated development environment for LPC
microcontrollers that comes with everything that is required to develop and debug
applications. This tool is available for free download from Code Red Technologies (requires
registration).
After LPCXpresso has been installed and registered, while executing the program it will ask
for the workspace path(shown in figure 9). Here browse to the folder of the provided
example source root directory that contains the directory “.metadata” (see section 7.5 for

source tree directory structure).

Figure 7-5: LPCXpresso Select workspace path

Once this is done, the example firmware project will be loaded into the workspace and it can either
be built so that the binary can be downloaded into the LPC1114, or it can be debugged by right-

clicking on LPC1114-FT12x in the project explorer window and on the context menu selecting

Debug As -> C/C++ MCU Application, as shown in figure 10.
The LPCXpresso features standard building and debugging features, the software’s help
documentation provides details about it.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 13

 Copyright © 2012 Future Technology Devices International Limited

Figure 7-6: Debugging using LPCXpresso

7.5 Firmware directory structure

 Project Root
o .metadata LPCXpresso generated directory
o CMSISv2p00_LPC11xx Standard CMSIS library for Cortex-M0
o LPC1114-FT12x

 .cproject

 .project

 .settings
 FT12x Contains all USB specific code

 Include
o al.h
o chap_9.h
o ci.h

o ftdi.h
o mainloop.h
o usb.h

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 14

 Copyright © 2012 Future Technology Devices International Limited

 src
o chap_9.c
o ci.c
o ftdi.c
o fw.c

o isr.c
 LPC1114 Contains all LPC1114 specific drivers

 cr_startup_lpc11.c
 gpio.c
 gpio.h
 main.c

 ssp.c
 ssp.h
 uart.c
 uart.h

The directory CMSISv2p00_LPC11xx contains standard CMSIS (Cortex Microcontroller Software

Interface Standard) files provided by ARM.

The files and directories that begin with a “.” (dot) are generated by LPCXpresso IDE.

7.6 The Reference Firmware

The reference firmware provided is divided into two directories, the LPC1114 directory has

the uart drivers(uart.h & uart.c), the SPI drivers(ssp.h & ssp.c), the GPIO drivers(gpio.h &
gpio.c), startup functions(cr_startup_lpc11.c) and firmware start point(main.c). Please note
that the drivers are example code provided with LPCXpresso and the startup code is
provided by Code Red Technologies, and they come with their own liabilities, please check
the comments sections in the respective file headers.
The FT12x directory contains all FTDI specific code where:

 chap_9.c contains all USB2.0 specification chapter 9 specific code.

 ci.c contains all the FT12x specific commands
 ftdi.c contains hardware specific helper functions
 fw.c contains the main(idle) loop and several important functions
 isr.c contains the USB interrupt service routine & subroutines

After starting a new LPC1114 project on LPCXpresso, the cr_startup_lpc11.c was modified at
the following sections to customize it for the FT12x reference firmware:

 The interrupt vector table: to add function pointers to SPI, UART & GPIO interrupts
handlers in the respective drivers.

 The SysTick_Handler interrupt handler: to update the ClockTicks.

The main() function in main.c is called from ResetISR after BSS and libraries have been
initialized. The main() function setups the directions of the I/O lines and their initial values,

setups the interrupts, initializes microcontroller peripherals and then calls FT12x_main().
The call graph for function FT12x_main() is shown in figure 11.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 15

 Copyright © 2012 Future Technology Devices International Limited

Figure 7-7: Call graph of FT12x_main

FT12x_main initializes the FT12x and then goes into a continuous loop that services control,
HID and CDC requests when they are sent from the host. The continuous loop may be
divided into the following parts:

 Process control requests
o Standard USB requests

 Get Status

 Clear Feature
 Set feature
 Set Address
 Get Descriptor
 Get Configuration
 Set Configuration

 Get Interface
 Set Interface

o Class specific requests
 HID requests

 Set Idle
 Set Out Report

 CDC-ACM requests

 Get Line Coding
 Set Line Coding

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 16

 Copyright © 2012 Future Technology Devices International Limited

 Set Control Line State
 Process HID requests

o Write Key Data to HID Interrupt-IN endpoint when key is pressed on board
 Process CDC-ACM requests

o If data had been received from host and are pending to be looped back then

write a chunk of that data to the CDC-ACM Bulk-IN endpoint

Figure 7-8: Call graph for USB ISR

GPIO pin1.11 is configured to call function fn_usb_isr() when FT12x raises a USB interrupt.
The call graph for fn_usb_isr() is shown in figure 12. On entering the function the firmware

issues command ReadInterruptRegister to FT12x to know what caused the interrupt. Then it

will call the respective endpoint handler. If data was received from the host then the
endpoint handler will copy the data from the FT12x to its local buffer, perform any minimum
processing required (lower half processing) and then signal the main loop to perform the
bulk of the processing by raising a flag.
Following are the other contexts that run the firmware apart from the USB ISR and the main
loop:

 SysTick handler: This interrupt handler only increments a software clock for internal

reference.
 GPIO pin 1.0 interrupt handler: This pin is connected to SW2 on the FT12x board.

When this switch is pressed a CAPSLOCK toggle event is registered. This event is
later detected in the main loop and the information is formatted into a report buffer
and sent to the USB host via the HID interfaces interrupt endpoint.

 GPIO pin 1.1 interrupt handler: This pin is connected to SW3 on the FT12x board.
When this switch is pressed a NUMLOCK toggle event is registered. This event is

later detected in the main loop and the information is formatted into a report buffer
and sent to the USB host via the HID interfaces interrupt endpoint.

 GPIO pin 3.2 interrupt handler: This pin is connected to push button SW1 on the
FT12x Evaluation board. When the button is pushed the corresponding ISR calls the
BSP’s system reset function.

The LEDs D2 and D3 on the UMFT12XEV Evaluation board correspond to key status of

CAPSLOCK and NUMLOCK respectively. They are toggled when the host sends class specific
request Set Output Report to the control endpoint.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 17

 Copyright © 2012 Future Technology Devices International Limited

7.7 Recommendations for porting to other MCUs

Given below are some recommendations that may be useful while porting this firmware to

another microcontroller:
 If using Parallel I/O, modify functions FT12x_WriteBuffer and FT12x_ReadBuffer in

file ftdi.c to suite the connection and timings.
 If using SPI, replace SSP_Send() in ci.c with the appropriate SPI data transferring

function.
 From the main function call FT12x_main after the microcontroller specific &

peripheral initializations are done.

 Call function fn_usb_isr() in isr.c from the ISR associated with the interrupt pin of
FT12x.

 Set variable KbdDataAvailable=0x39 and KbdDataAvailable=0x53 respectively in the
ISRs associated with the CAPSLOCK and NUMLOCK keys.

 Modify function Set_LED() in ftdi.c to turn ON/OFF CAPSLOCK and NUMLOCK status
LEDs.

 Modify the macros ENABLE and DISABLE in ftdi.h to enable and disable interrupts for

that MCU.
 Configure a timer interrupt to increment variable ClockTicks approximately every

10mS.

.

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 18

 Copyright © 2012 Future Technology Devices International Limited

8 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited
(USA)
7130 SW Fir Loop,
Tigard, OR 97223
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,

Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications
assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the

user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from

such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 19

 Copyright © 2012 Future Technology Devices International Limited

Appendix A – References

Document References

FT120 Data Sheet
FT121 Data Sheet

FT122 Data Sheet

USB 2.0 Specification
USB CDC-ACM Class Specification
USB HID Class Specification
ARM Cortex M0 Technical Reference Manual

LPC1114 Datasheet
LPC1114 User Manual
Cortex Microcontroller Software Interface Standard(CMSIS) Specification

LPCXpresso User Guide – Getting Started with NXP LPCXpresso

Acronyms and Abbreviations

Terms Description

ADC Analogue to Digital Converter

CDC Communication Device Class

DMA Direct Memory Access

HID Human Interface Device

I2C Inter Integrated Circuit

SPI Serial Peripheral Interface

USB Universal Serial Bus

WDT Watch Dog Timer

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT120.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT120.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT121.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT122.pdf
http://www.usb.org/developers/docs/usb_20_071012.zip
http://www.usb.org/
http://www.usb.org/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
http://www.nxp.com/documents/data_sheet/LPC111X.pdf
http://www.nxp.com/documents/user_manual/UM10398.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.getting.started.pdf

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 20

 Copyright © 2012 Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Figures

Figure 1-1: FT12x in a USB System ... 2
Figure 2-1: FT12 Series Architecture ... 3
Figure 5-1: USB Enumeration ... 7
Figure 6-1: Control Transfer ... 9
Figure 7-1: USB interfaces of the example USB device firmware ... 10
Figure 7-2: Endpoint map .. 10
Figure 7-3: LPCXpresso Target Board populated with LPC1114 ... 11
Figure 7-4: UMFT12XEV Evaluation Kit... 11
Figure 7-5: LPCXpresso Select workspace path ... 12
Figure 7-6: Debugging using LPCXpresso ... 13
Figure 7-7: Call graph of FT12x_main .. 15
Figure 7-8: Call graph for USB ISR .. 16

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 21

 Copyright © 2012 Future Technology Devices International Limited

Appendix C – Revision History

Document Title: AN_225 FT12 Series Firmware Programming Guide
Document Reference No.: FT_000748
Clearance No.: FTDI# 316
Product Page: http://www.ftdichip.com/FTProducts.htm
Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 25-09-2012

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_225%20Version%201.0

 Application Note AN225

 FT12 Series Firmware Programming Guide
 Version 1.0

 Document Reference No.: FT_000748 Clearance No.: FTDI# 316

 22

 Copyright © 2012 Future Technology Devices International Limited

