

Application Note

AN_209

AN_209 PDIUSBD12 to FT120 Migration Guide

Version 1.1

Issue Date: 2012-12-14

The FT120 is a cost and feature optimized USB Full-Speed device controller. It communicates with a micro-controller over a generic parallel interface, and integrates USB device/slave functionality into a system. This application note describes how to implement the device in legacy designs where the PDIUSBD12 was being used, as well as some minor differences between the two chips.

Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits or expense resulting from such use.

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com

Version 1.1

Table of Contents

1	Intro	oduction	2
2	FT12	20 vs PDIUSBD12	3
	2.1	Features	3
	2.2	Pinout	4
3	Refe	erence Schematic	6
4	BON	Л Changes Required	7
5	Firm	nware	8
	5.1	Set DMA Functional Difference	9
	5.2	CLKOUT and SUSPEND Pin Differences	10
6	IO L	evels	11
7	Ord	ering Information	12
8	Sum	ımary	13
9	Con	tact Information	14
Α	ppendix	A – References	15
	Docum	nent References	15
	Acrony	yms and Abbreviations	15
Α	ppendix	⟨B – List of Tables & Figures	16
	List of	Tables	16
	List of	Figures	16
Δ	nnendi	(C - Revision History	17

Version 1.1

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

1 Introduction

The FT120 is a cost and feature optimized USB full-speed device controller. It communicates with a micro-controller over the generic parallel interface. The design closely matches the PDIUSBD12 which has been a very popular USB solution over the past decade, but is now becoming increasingly difficult to source in volume. To fill this gap in the market, the FT120T (28 pin TSSOP package) may be used in designs originally intended for PDIUSBD12 devices by following the advice in this application note.

Version 1.1

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

2 FT120 vs PDIUSBD12

2.1 Features

The main features of the two generations of devices are shown below. To maximize compatibility, the 28 pin TSSOP package has been selected.

FEATURE	FT120	PDIUSBD12
MECHANICAL		
Packages	28 pin TSSOP 28 Pin QFN	28 pin TSSOP SO28
Temperature	-40°C to 85°C	-40°C to 85°C
ELECTRICAL		
VCC Supply	3V3 or 5.0V	3V3 or 5.0V
IO Levels	3V3 (5V tolerant)	3V3 or 5.0V
Operating Current	7mA	15mA
Suspend current	83uA	15uA
USB Modes		
Speed	Full Speed	Full Speed
Transfer Modes	Bulk / Isochronous / Interrupt	Bulk / Isochronous / Interrupt
DATA THROUGHPUT		
Bulk mode	Up to 1MByte/s (typical)	Up to 1MByte/s (typical)
Isochronous mode	Up to 1Mbit/s (typical)	Up to 1Mbit/s (typical)
DMA ENGINE	YES	YES

Table 2.1 Feature comparison

2.2 Pinout

The pinout of the two devices match as per the table below:

PIN	FT120T	PDIUSBD12	DESCRIPTION
1	DATA0	DATA0	Bit 0 of bi-directional data.
2	DATA1	DATA1	Bit 1 of bi-directional data.
3	DATA2	DATA2	Bit 2 of bi-directional data.
4	DATA3	DATA3	Bit 3 of bi-directional data.
5	GND	GND	Ground
6	DATA4	DATA4	Bit 4 of bi-directional data.
7	DATA5	DATA5	Bit 5 of bi-directional data.
8	DATA6	DATA6	Bit 6 of bi-directional data.
9	DATA7	DATA7	Bit 7 of bi-directional data.
10	ALE	ALE	Address Latch Enable. The falling edge is used to close the latch of the address information in a multiplexed address/ data bus. Permanently tied low for separate address/ data bus configuration.
11	CS_N	CS_N	Chip Select (Active Low)
12	SUSPEND	SUSPEND	Device suspend(output) and wakeup(input)
13	CLKOUT	CLKOUT	Programmable Output Clock
14	INT_N	INT_N	Interrupt (Active Low)
15	RD_N	RD_N	Read Strobe (Active Low)
16	WR_N	WR_N	Write Strobe (Active Low)
17	DMREQ	DMREQ	DMA Request.
18	DMACK_N	DMACK_N	DMA Acknowledge (Active Low).
19	EOT_N	EOT_N	End of DMA Transfer (Active Low). Double up as Vbus sensing. EOT_N is only valid when asserted together with DMACK_N and either RD_N or WR_N.
20	RESET_N	RESET_N	Reset (Active Low and asynchronous). Built-in power-on reset circuit is present on- chip, so this pin can be tied to VCC.

Version 1.1

PIN	FT120T	PDIUSBD12	DESCRIPTION
21	GL_N	GL_N	USB traffic LED indicator (Active Low)
22	XTAL1	XTAL1	Crystal connection 1 (6MHz); alternatively, a 1.8V square wave clock can be applied.
23	XTAL2	XTAL2	Crystal connection 2 (6MHz); if the external clock signal, instead of the crystal, is connected to XTAL1, then XTAL2 should be left unconnected
24	Vcc	Vcc	Voltage supply (4.0 - 5.5V); To operate the IC at 3.3 V, supply 3.3 V to both the VCC and 3V3OUT pins
25	USBDM	D-	USB D- data line
26	USBDP	D+	USB D+ data line
27	3V3OUT	VOUT3.3	3.3V regulated output; To operate the IC at 3.3 V, supply 3.3 V to both the VCC and 3V3OUT pins
			Address bit.
			A0=1 selects command instruction;
28	A0	A0	A0=0 selects the data phase.
			This pin is ignored in the multiplexed address and data bus configuration and should be tied to HIGH.

Table 2.2 Pinout comparison

Version 1.1

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

3 Reference Schematic

Figure 3.1 shows a reference schematic. All power and termination options are the same as per a PDIUSBD12 schematic.

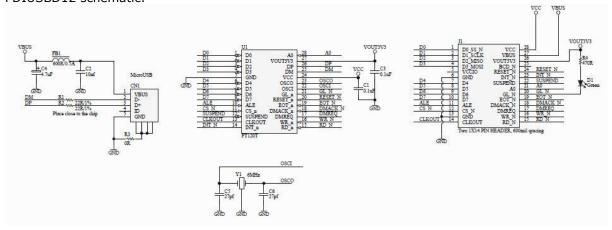


Figure 3.1 Reference Schematic

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

4 BOM Changes Required

The only BOM change required to a design already using a PDIUSBD12 $28 \, \mathrm{pin}$ TSSOP device is to replace the device with the FT120.

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

5 Firmware

The register map for the PDIUSBD12 and the FT120 are the same. This allows the control firmware used for the PDIUSBD12 to be compatible with the FT120 and therefore application software should not need to be changed. FTDI recommends that application software be revalidated with the new chip.

Command Name	Recipient	Coding	Data phase				
Initialization Commands							
Set Address / Enable	Device D0		Write 1 byte				
Set Endpoint Enable	Device	D8h	Write 1 byte				
Set Mode	Device	F3h	Write 2 byte				
Set DMA	Device	FBh	Write/Read 1 byte				
·	Data Flow Comm	nands					
Read Interrupt Register	Device	F4h	Read 2 bytes				
Select Endpoint	Control OUT	00h	Read 1 byte (optional)				
	Control IN	01h	Read 1 byte (optional)				
	Endpoint 1 OUT	02h	Read 1 byte (optional)				
	Endpoint 1 IN	03h	Read 1 byte (optional)				
	Endpoint 2 OUT	04h	Read 1 byte (optional)				
	Endpoint 2 IN	05h	Read 1 byte (optional)				
Read Last Transaction Status	Control OUT	40h	Read 1 byte				
	Control IN	41h	Read 1 byte				
	Endpoint 1 OUT	42h	Read 1 byte				
	Endpoint 1 IN	43h	Read 1 byte				
	Endpoint 2 OUT	44h	Read 1 byte				
	Endpoint 2 IN	45h	Read 1 byte				
Read Endpoint Status	Control OUT	80h	Read 1 byte				
	Control IN	81h	Read 1 byte				
	Endpoint 1 OUT	82h	Read 1 byte				
	Endpoint 1 IN	83h	Read 1 byte				
	Endpoint 2 OUT	84h	Read 1 byte				

	Endpoint 2 IN	85h	Read 1 byte
Read Buffer	Selected Endpoint	Selected Endpoint F0h Read n byte	
Write Buffer	Selected Endpoint	F0h	Write n bytes
Set Endpoint Status	Control OUT	40h	Write 1 byte
	Control IN	41h	Write 1 byte
	Endpoint 1 OUT	42h	Write 1 byte
	Endpoint 1 IN	43h	Write 1 byte
	Endpoint 2 OUT	44h	Write 1 byte
	Endpoint 2 IN	45h	Write 1 byte
Acknowledge Setup	Selected Endpoint	F1h	None
Clear Buffer	Selected Endpoint	F2h	None
Validate Buffer	Selected Endpoint	FAh	None
	General Comm	ands	
Send Resume		F6h	None
Read Current Frame Number		F5h	Read 1 or 2 bytes

Table 5.1 Register list

The bit mapping for each register is available in the FT120 datasheet.

5.1 Set DMA Functional Difference

In register FB (Set DMA) bits 6 and 7 allow for interrupts to be enabled / disabled.

With the PDIUSBD12, interrupts will be generated regardless of the setting in this register.

With the FT120, the interrupt will be enabled/disabled according to the value set when used in DMA mode.

To ensure maximum compatibility with PDIUSBD12 designs it is recommended the interrupts are enabled in this register. However new designs may use these bits to set the interrupts as per the design requirements.

Firmware using non-DMA mode is not affected.

version 1.1

5.2 CLKOUT and SUSPEND Pin Differences

The FT120 has a variety of different clock modes configured with the Set Mode register F3 as shown in Table 5.2 affecting the CLKOUT and SUSPEND pin.

	C6		CLKOUT o	utput (erra	ta 3.1.3)	SUSPEND outp	ut (erra	ta 3.1.2)					
	Configui	ration bits		suspend	d mode			suspend mode					
Mode	NO LAZY CLOCK	CLOCK RUNNING	normal operation	D12	FT120	normal operation	D12	FT120	suspend handler	Recommended Workaround			
0	0	0	Divided Clock	Lazy Clock	Lazy Clock	LOW	HIGH	HIGH	pin	Not required			
1	0	1	Divided Clock	Lazy Clock	Divided Clock	LOW	HIGH	LOW	interrupt	Firmware change to mode 0, change to handle suspend by pin			
												pin	FW change to mode 0
2	1	0	Divided Clock	No Clock	No Clock	LOW	HIGH	HIGH	pin	Not required			
				Divided	Divided	Divided				interrupt	Not required		
3	1	1	Clock	Clock	Clock	LOW	HIGH	SH LOW	pin	Firmware change to handle suspend by interrupt			

Table 5.2 Clock Modes

Modes 0 and 3 are 100% backward compatible with the PDIUSBD12, but for designs originally using mode 1, (NO LAZY CLOCK = 0 and CLOCK RUNNING = 1) it is recommended to alter the firmware to use mode 0. Thus ensuring the CLKOUT pin "Lazy clock" is enabled and the SUSPEND pin is logic 1 during suspend mode.

For designs originally using mode 3, (NO LAZY CLOCK =1 and CLOCK RUNNNIG = 1) the SUSPEND pin will not drive high as per USBD12 designs.

Firmware can be modified to set the CLOCK RUNNING bit of Set Mode command to be '0' (Mode 0 or Mode 2). Under this configuration the CLKOUT will switch to 30 kHz suspend clock upon entering USB suspend state. To resume the USB bus, firmware needs to wakeup FT120 by drive the SUSPEND pin to LOW, and then issue Send Resume command to FT120.

6 IO Levels

The FT120 has been designed to be used in 3V3 systems. The IO pins are designed to drive out at 3V3 levels, but support input levels from 3V3 to 5V.

In many systems 3V3 output will be sufficient to drive 5V logic, but in other cases it may require additional logic to boost the logic level.

The PDIUSBD12 device was designed to operate in 3V3 to 5V systems and as such is capable of driving out at 3V3 to 5V levels.

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

7 Ordering Information.

Part Number	Package	
FT120T-00-U	28 Pin TSSOP, Tube	

Table 7.1 Part numbers

Version 1.1

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

8 Summary

Updating an existing design from a PDIUSBD12 to the FT120 should be a simple process, requiring a small BOM change ie swap the PDIUSBD12 out for the FT120T. All existing and proven firmware shall run on the new FT120T as it did on the original device. This solution allows for a rapid upgrade to ensure designs which may have been deemed obsolete due to supply difficulties with the original parts can enjoy an extended life span.

9 Contact Information

Head Office - Glasgow, UK

Future Technology Devices International Limited Unit 1, 2 Seaward Place, Centurion Business Park Glasgow G41 1HH

United Kingdom

Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office - Taipei, Taiwan

2F, No. 516, Sec. 1, NeiHu Road

Taipei 114 Taiwan , R.O.C.

Tel: +886 (0) 2 8797 1330 Fax: +886 (0) 2 8751 9737

Web Site

http://ftdichip.com

Branch Office - Hillsboro, Oregon, USA

7130 SW Fir Loop Tigard, OR 97223-8160

USA

Tel: +1 (503) 547 0988 Fax: +1 (503) 547 0987

E-Mail (Sales)

E-Mail (Support)

E-Mail (General Enquiries)

us.sales@ftdichip.com
us.support@ftdichip.com
us.admin@ftdichip.com

Branch Office - Shanghai, China

Room 1103, No. 666 West Huaihai Road,

Shanghai, 200052

China

Tel: +86 21 62351596 Fax: +86 21 62351595

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

Appendix A - References

Document References

FT120 Data Sheet

Acronyms and Abbreviations

Terms	Terms Description			
DMA	Direct Memory Access			
USB	Universal Serial Bus			

version 1.1

Appendix B – List of Tables & Figures

List of Tables

Table 2.1 Feature comparison	
Table 2.2 Pinout comparison	
Table 5.1 Register list	
Table 5.2 Clock Modes	
Table 6.1 Part numbers	12
List of Figures	
Figure 3.1 Reference Schematic	6

Version 1.1

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

Appendix C - Revision History

Document Title: AN_209 PDIUSBD12 to FT120 Migration Guide

Document Reference No.: FT_000676 Clearance No.: FTDI# 289

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision	Changes	Date
1.0	Initial Release	2012-M05-08
1.1	Added section 6 on IO levels Update contact info	2012-12-14