

Future Technology Devices International

Application Note

AN_201

FT-X MTP memory Configuration

2.0

Issue Date: 2013-12-18

This application note describes the MTP Memory Map of the FTDI FT-X series of chips. This MTP memory is used for storing configuration data in the FT-X series of devices. The MTP Memory can be read and written over USB on all FT-X series devices, and can also be read and written over I2C on the members of the FT-X family which include I2C interfaces.

This application note only covers the MTP memory map. It does not cover the methods of reading and writing the memory. These are covered in the individual device datasheet and the D2XX Programmers Guide.

Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use.

Table of Contents

1]	Introduction	3
2 (Overview of the MTP Memory	1
2.:	L Memory Areas	4
2.2	2 Reading and Writing Commands	4
2.3	B Programming over I2C and USB	4
2.4	Important Warnings and Notes	5
3 I	Memory Map	5
3.:	L Memory Map Diagram	5
4 I	Jser Data Area	3
5 9	String descriptor Data	•
6 I	TDI Configuration Data 10)
7 (Configuration Descriptor data1	L
7.:	L Misc Config	1
7.2	2 USB VID	2
7.3	3 USB PID	2
7.4	BCD Release Number 12	2
7.	5 Max Power & Config Description Value 12	2
7.0	5 Device & Peripheral Control1	3
7.7	7 DBUS & CBUS Control 14	4
7.8	3 Manufacturer String Descriptor14	4
7.9	Product String Descriptor 14	4
7.:	10 Serial Number String Descriptor14	4
7.:	11 I2C Address + Options	5
7.:	L2 CBUS[6:0] Mux Control1	5
8	Calculating the Checksum 18	3
8.3	L Checksum Calculation Example19	9
9 (Contact Information2	L
Арр	endix A – References 22	2
Do	cument References 22	2
Ac	ronyms and Abbreviations2	2

Appendix B – List of Tables &	Figures 23
Appendix C – Revision Histor	y 24

1 Introduction

This application note describes the internal MTP (Multi-Time Programmable) memory map configuration area of the FT-X devices, also known as the X-Chip Series. This memory is used to hold information such as the Vendor ID, Product ID, String Descriptors, I2C address and functions assigned to each available Control Bus (CBUS) pin.

The MTP memory is available in all FT-X series devices and performs the same function as the internal EEPROM in the FT232R/FT245R devices.

This document details the data stored in each word of the MTP memory map so that a user application can determine which values to write to configure the chip.

This application note does not cover the User area of MTP memory or the details of writing the values to the MTP (over I2C or USB). These are covered in the datasheet for each FT-X device and also in the D2XX Programmers Guide.

2 Overview of the MTP Memory

2.1 Memory Areas

There are two main areas of MTP memory, which are the User area and the Configuration area. A more detailed memory map is provided in the following section.

User Area

This area can be used for storing application-specific data, for example a calibration constant in an analog measurement system. It is not used for chip configuration. This can be useful as it can avoid the cost and space needed to fit a separate EEPROM chip on the application board when only a few values need to be stored.

User area programming is not covered in the remainder of this document as it is covered in the FT-X device datasheet (for programming over I2C in devices which include an I2C interface) and in the D2XX Programmers Guide for all FT-X devices. Note that the user area is not included in the MTP checksum and so modification of the user area does not require re-calculation of the checksum.

Note: An application intending to write to the user area of the MTP memory should take care not to unintentionally change any data in the configuration area.

Configuration Area

The device is initially supplied with the configuration areas of the MTP memory already programmed with default values and so in many cases the device can be used without any MTP programming at all. Changing the contents of the Configuration areas of the MTP memory programming is only required when the final application requires the settings to be customised.

Some examples of customising the configuration settings include:

- When the FT-X is to be given a custom Vendor (VID) and/or Product ID (PID)
- When the FT-X is to be given a specific serial number
- When the application requires different settings on the CBUS pins e.g. to configure the pins to output the functional signals necessary for battery charging as shown in Application Note, AN_175 (see References Section).

2.2 Reading and Writing Commands

This application note covers the memory map itself but does not cover the methods of reading and writing the memory, because this depends on the interface used. Further details on the read and write commands themselves can be found in the following documents:

- For applications which will read and write the MTP memory over I2C, the device datasheet contains the commands required to read and write the MTP memory. This includes the FT200XD and FT201X.
- For applications which will program the MTP memory over USB, the D2xx Programmers Guide contains the commands required to read and write MTP memory. This includes all members of the FT-X device family.

2.3 Programming over I2C and USB

FTDI provide two methods of programming the MTP memory. These are designed to make it as easy and as efficient as possible to do this whether executed as part of the production/test process or the final application.

Programming the MTP memory over USB

The MTP memory on all FT-X devices can be programmed over USB. This method is similar to the other FTDI devices such as the FT232R. No additional hardware, connections or programming voltages are required. The device is simply connected to the host computer in the same way that it would be for normal applications, and the programming is carried out over USB.

There are two methods for programming over USB:

- FTDI provide a utility called FT_Prog which can be used to program the MTP memory. This utility
 provides a graphical user interface and can be used to configure the device without needing to
 know the actual memory map. The FT-Prog utility is provided free-of-charge from the FTDI
 website, and can be found at the link below. Please use the latest version available. The user
 guide is also available at this link. Note that the FT-X devices require FT_Prog version 2.6.8 or
 later. http://www.ftdichip.com/Support/Utilities.htm#FT_Prog
- D2XX commands can also be used to program the MTP memory from within user applications. For more information on the commands available, please see the D2XX Programmers Guide (See Reference [2] in Appendix A – References). The remainder of this document can be used to determine the values in each location in order to configure the device as required.

Note that when programming over USB, word addresses are used.

Programming the MTP memory over I2C

In FT-X devices with I2C interfaces, it is also possible to program the MTP memory over I2C by using special commands.

This can be beneficial when no USB host is available to configure the MTP memory. For example, a bedof-nails test jig where no host is present as part of a production and test set-up. Also, if the FT-X is acting as a bridge between a microcontroller/FPGA and a USB host as part of an application, the microcontroller/FPGA can modify or program the MTP memory data. This could include changes to the configuration data (such as serial number) and/or storing application data in the user area of the MTP memory.

Note that when programming over I2C, byte addresses are used.

2.4 Important Warnings and Notes

Care must be taken when performing write operations on the MTP memory

- Failure to recalculate a checksum after changing any of the configuration areas may prevent correct operation. An incorrect checksum will cause the device to use default values.
- Modifying the MTP data may cause errors and can completely change the operation of the chip. Ensure that the effect of the modification has been considered before writing the new value to MTP memory. For example, switching to the external oscillator mode will prevent the device from running from its internal oscillator. This cannot be changed back unless an external crystal is temporarily connected to allow the MTP memory to be programmed to select the internal clock source again.
- It should be verified that the application code causes only the intended area to be modified and that the value written is valid for that MTP memory location. For example, an application intending to write to the user area of the MTP memory should include safeguards to ensure that it does not unintentionally write to an address in the configuration area. Values written should also be valid values according to the tables in the following section.
- Ensure that the application takes account of the MTP memory write cycle specification in the datasheet of the FT-X device.

3 Memory Map

The FT-X MTP memory has various areas which come under five main categories:

- User Areas
- Checksum Area
- String Descriptor Area
- FTDI Configuration Area
- Chip Configuration Area

3.1 Memory Map Diagram

Figure 3.1 illustrates a simplified memory map of the MTP memory, showing the address ranges of the areas listed above.

Memory Area Description	Word Address	Byte Address
User Area 2 Accessible via USB and I ² C	0x3FF - 0x80	0x7FF – 0x100
Checksum	0x7F	OxFF – OxFE
String Descriptor Area Accessible via USB and I ² C	0x7D - 0x50	OxFB — OxAO
FTDI Configuration Area Cannot be written	0x4F - 0x40	0x9F – 0x80
User Area 1 Accessible via USB and I ² C	0x3F - 0x12	0x7F – 0x24
Chip Configuration Area Accessible via USB and I ² C	0x11 - 0x00	0x23 - 0x00

Figure 3.1: Simplified memory map for the FT-X

A more detailed memory map can be found in Figure 3.2 below.

In Figure 3.2, bytes highlighted in pink represent areas of memory which are protected while the bytes highlight in blue represent areas of memory which can be programmed with user defined data.

Note that Figure 3.1 shows the entire address range for that block. For example, FTDI Configuration Area includes bytes 0x9F to 0x80. However, Figure 3.2 shows the address of the right-hand byte or word only instead of the address range. (e.g. FTDI Configuration Area shows 0x9C to 0x80).

Document Reference No.: FT_000572 Clearance No.: 298

- Address 0x80 -0x3FF is used - can be written to using USB & - this user area is excluded from		Memory Space		0x3FE ↓ 0x80	0x7FC ↓ 0x100
Cheo	cksum	UNU	SED	0x7E	0xFC
String Descriptor Space Used to hold the following: Serial Number String Descriptor Product String Descriptor Manufacturer String Descriptor			0x7C ↓ 0x50	0xF8 ↓ 0xA0	
	CHEO			0x4E	0x9C
Factory Configuration Data			0x4C	0x98	
			0x4A	0x94	
Configuration data is used read	ardless of chacksum			0x48	0x90
Configuration data is used rega Not writable by the user	ardless of checksum			0x46	0x8C
	ardless of checksum			0x46 0x44	0x8C 0x88
	ardless of checksum			0x46	0x8C
Not writable by the user	User Mem specifically for customers data & I2C interfaces	ory Space		0x46 0x44 0x42	0x8C 0x88 0x84
Not writable by the user - Address 0x12 -0x3F is used - can be written to using USB	User Mem specifically for customers data & I2C interfaces	iory Space	CBUS 6	0x46 0x44 0x42 0x40 0x40	0x8C 0x88 0x84 0x80 0x80
Not writable by the user - Address 0x12 -0x3F is used - can be written to using USB	User Mem specifically for customers data & I2C interfaces on the checksum calculation	ory Space CBUS 3	CBUS 6 CBUS 2	0x46 0x44 0x42 0x40 0x40 0x3E ↓ 0x12	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24
Not writable by the user - Address 0x12 -0x3F is used - can be written to using USB - this user area is excluded fro	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused	CBUS 3	CBUS 2 I2C Slave Device ID 3	0x46 0x44 0x42 0x40 0x40 0x3E ↓ 0x12	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24
Address 0x12 -0x3F is used - can be written to using USB - this user area is excluded fro CBUS 5	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1	CBUS 3	CBUS 2 I2C Slave Device ID 3 Address	0x46 0x44 0x42 0x40 0x40 0x40 0x40 0x12 0x12 0x12 0x0E 0x0C 0x0A	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14
Address 0x12 -0x3F is used can be written to using USB this user area is excluded fro CBUS 5 CBUS 1 I2C Slave Device ID 2 Serial Str Description Length	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1 Serial Str Description Pointer	CBUS 3	CBUS 2 I2C Slave Device ID 3 Address Prod. Str Description Pointer	0x46 0x44 0x42 0x40 0x40 0x40 0x12 0x12 0x12 0x12 0x0E 0x0C 0x0A 0x08	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14 0x10
Address 0x12 -0x3F is used can be written to using USB this user area is excluded fro CBUS 5 CBUS 1 I2C Slave Device ID 2 Serial Str Description Length Man. Str. Description Length	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1 Serial Str Description Pointer Man. Str. Description Pointer	CBUS 3 I2C Slave Pred Str Description Length	CBUS 2 I2C Slave Device ID 3 Address Prod. Str Description Pointer CBUS IO Ctrl IOBUS Ctrl	0x46 0x44 0x42 0x40 0x40 0x3E ↓ 0x12 0x12 0x10 0x0E 0x0A 0x0A 0x08 0x06	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14 0x10 0x0C
Not writable by the user - Address 0x12 -0x3F is used - can be written to using USB - this user area is excluded fro CBUS 5 CBUS 5 CBUS 1 I2C Slave Device ID 2 Serial Str Description Length Man. Str. Description Length Device & Per	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1 Serial Str Description Pointer Man. Str. Description Pointer ipheral Control	CBUS 3 I2C Slave Prod Str Description Length MAX Power	CBUS 2 I2C Slave Device ID 3 Address Prod. Str Description Pointer CBUS IO Ctrl IOBUS Ctrl Config Description Value	0x46 0x44 0x42 0x40 0x40 0x40 0x12 0x12 0x12 0x12 0x0E 0x0C 0x0A 0x08	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14 0x10 0x0C 0x08
Not writable by the user - Address 0x12 -0x3F is used - can be written to using USB - this user area is excluded fro CBUS 5 CBUS 5 CBUS 1 I2C Slave Device ID 2 Serial Str Description Length Man. Str. Description Length Device & Per	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1 Serial Str Description Pointer Man. Str. Description Pointer	CBUS 3 I2C Slave Pred Str Description Length	CBUS 2 I2C Slave Device ID 3 Address Prod. Str Description Pointer CBUS IO Ctrl IOBUS Ctrl Config Description Value	0x46 0x44 0x42 0x40 0x40 0x3E ↓ 0x12 0x12 0x10 0x0E 0x0A 0x0A 0x08 0x06	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14 0x10 0x0C
Address 0x12 -0x3F is used can be written to using USB this user area is excluded fro CBUS 5 CBUS 1 I2C Slave Device ID 2 Serial Str Description Length Man. Str. Description Length Device & Per USB BCD Re	User Mem specifically for customers data & I2C interfaces om the checksum calculation unused CBUS 4 CBUS 0 I2C Slave Device ID 1 Serial Str Description Pointer Man. Str. Description Pointer ipheral Control	CBUS 3 I2C Slave Prod Str Description Length MAX Power	CBUS 2 I2C Slave Device ID 3 Address Prod. Str Description Pointer CBUS IO Ctrl IOBUS Ctrl Config Description Value PID	0x46 0x44 0x42 0x40 0x42 0x40 0x12 0x12 0x12 0x12 0x10 0x0E 0x0C 0x0A 0x08 0x06 0x04	0x8C 0x88 0x84 0x80 0x7C ↓ 0x24 0x24 0x20 0x1C 0x18 0x14 0x10 0x0C 0x08

Figure 3.2: Memory map for the FT-X

4 User Data Area

All locations within this range are freely programmable; no areas have special functions. There is no checksum for the user area.

Note that the application should take into account the specification for the number of write cycles in the device datasheet if it will be writing to the MTP memory multiple times.

5 String descriptor Data

This area stores the following strings:

- Serial Number String Descriptor
- Product String Descriptor
- Manufacturer String Descriptor

The checksum must be re-calculated and re-programmed after writing this area. The locations pointing to the different descriptors and their length must also be programmed. See sections: 7.8, 7.9 and 7.10.

6 FTDI Configuration Data

This area is written during production test by FTDI and can never be modified by the user. There are no parameters here that any application should ever need to modify. Attempts to write to this area will fail.

7 Configuration Descriptor data

This area stores the configuration data for the device, including the data which is returned to the host in the configuration descriptors, the hardware configuration (signal assigned to each CBUS pin for example) and the IDs and Address for the I2C interface (in the case of the FT200XD and FT201X).

This area is included in the checksum, and the checksum must therefore be re-calculated whenever the contents of this area are modified.

7.1 Misc Config

Bit	Mode Function	Description
o	BCD Enable	Enable Battery charge detection. This must be enabled to allow the device to detect a Dedicated Charging Port.
		1 = Enable (Battery Charge Detection is on)
		0 = Disable (Battery Charge Detection is off)
1	Force Power Enable	When BCD is enabled and a BCD port is detected, force power enable asserts the power enable signal on CBUS
		1 = Enable (Force Power Enable is on)
		0 = Disable (Force Power Enable is off)
2	De-activate Sleep	When BCD is enabled and a BCD port is detected, de- activate sleep forces the device never to go into sleep mode
_		1 = Enable (De-Activate Sleep function is on)
		0 = Disable (De-Activate Sleep function is off)
		RS485 Echo suppression Enable
3	RS485 Echo Suppression	1 = Enable (Echo are suppressed)
		0 = Disable (Echo not suppressed)
		0 = Use INTERNAL oscillator
4	Ext. OSC	1 = Use EXTERNAL oscillator
_		0 = Ext. OSC Feedback resistor enabled
5	Ext. OSC Feedback Resistor Enable	1 = Ext. OSC Feedback resistor disabled
		Indicates that a CBUS pin has been allocated to VBUS sense mode. When self powered, use this mode to determine when the device is connected to a powered host.
6	CBUS pin set for VBUS sense	Used when operating in a self powered mode and is used to prevent forcing current down the USB lines when the host or hub is powered off.
		1 = A CBUS pin has been allocated to VBUS sense mode.
		0 = A CBUS pin has not been allocated to VBUS sense mode.
7	Load D2XX or VCP Driver	Enables software to select which driver to load

Document Reference No.: FT_000572 Clearance No.: 298

		1 = Load VCP (load VCP layer on top of D2xx)
		0 = Load D2xx (i.e. do not load VCP layer)
15:8	unused	
Table 7.1: Misc Config Bit Description		

7.2 USB VID

Bit	Mode	Description
15:0	USB Vendor Identifier	A 16-bit number used for vendor identification, the default for the FTX devices is 0x0403
Table 7.2: USB VID		

7.3 USB PID

Bit	Mode	Description
15:0	USB Product Identifier	A 16-bit number used for product identification, the FT-X has been assigned a PID of 0x6015 by default.
Table 7.3: USB PID		

7.4 BCD Release Number

Bit	Mode	Description	
15:0	Binary Coded Decimal Release Number	This is used in the USB device descriptor which contains information about the major and minor releases of the device. It is coded as binary coded decimal. Refer to chapter 9 in the USB specification for more detail. For example, 0x0200 is USB 2.0	
Table 7.4 BCD Release Number			

7.5 Max Power & Config Description Value

Bit	Mode	Description
4:0	Unused	Reserve to 0
	Enable USB Remote wakeup	Setting this configures the FT232EX to allow itself to be remotely woken by something other than USB.
5		0 = Disabled remote wakeup
		1 = Enable remote wakeup
	Self Powered	0 = Indicates that the FT-X is powered by USB bus
6		1 = Indicates that the FT-X is self powered
7	Unused	Reserve to 1
15:8	Max Power Value	Used to set the maximum current limit the device/product can support from USB (in units of 2mA). For example, 0x2D is 45 and gives 90mA.
Table 7	3.5: Max power and USB Configuration (ptions

7.6 Device & Peripheral Control

Bit	Mode	Description
1:0	Unused	
		When the FT-X enters USB suspend, all IO, by default, are pulled up. Set this bit to 1 to pull down all IO when suspended
2	USB suspend pull down enable	0 = Only IO inputs are pulled up when USB suspend. This is the normal operating mode (*)
		1 = All IO are made inputs and are pulled down when USB suspend (**)
3	Enable/Disable USB Serial Number	When USB requests a device descriptor, if this bit is set to 1 then it indicates to the USB host that a serial number is available
		FT1248 Clock polarity
4	FT1248 CPOL	0 = Clock is active low
		1= Clock is active high
		FT1248 Bit Order
5	FT1248 BORD	0= Data transmitted MSB to LSB
		1 = Data transmitted LSB to MSB
		FT1248 flow control enable
6	FT1248 Flow Control Enable	When enabled turns on FT1248 flow control when SS_n is inactive.
		Disable the I2C Schmitt pad control
7	Disable I2C Schmitt	Both I2C pads have Schmitt triggers. These can be disabled by setting 1 to this bit.
8	Invert TXD	Set to 1, to invert the TXD signal
9	Invert RXD	Set to 1, to invert the RXD signal
10	Invert RTS	Set to 1, to invert the RTS signal
11	Invert CTS	Set to 1, to invert the CTS signal
12	Invert DTR	Set to 1, to invert the DTR signal
13	Invert DSR	Set to 1, to invert the DSR signal
14	Invert DCD	Set to 1, to invert the DCD signal
15	Invert RI	Set to 1, to invert the RI signal
	Table 7 6. Device	e & Peripheral Control

Table 7.6: Device & Peripheral Control

* Mode 0 has three exceptions to the all inputs are pulled up rule:

1. The I2C SDA and SCL pins are never pulled up. Pull-ups for I2C mode are the responsibility of the I2C master.

2. When a CBUS pin is in VBUS Sense mode the CBUS input will not be pulled up.

3. When in synchronous or asynchronous bit bang mode, pull up control is under user control.

** Mode 1 (All IO's pulled down) is designed for the case where the FTX PWREN# pin is used to switch a FET, which will provide to the rest of the circuit/board. PWREN# is activated when a part is fully operational (not suspended or in reset) and the USB state is configured. All I/O's will remain pulled down until this condition occurs.

*** Disable_I2C_Schmitt can be over-ridden by the DBUS_Schmitt_Trigger_Enable setting (Section 7.7)

7.7 DBUS & CBUS Control

Bit	Mode	Description
1:0	DBUS Drive Current Strength	Sets the drive current for all DBUS pads 00 = 4mA, $01 = 8mA$, $10 = 12mA$, $11 = 16mA$
2	DBUS Slew Rate	Sets the slew rate for all DBUS pads 0 = Fast slew rate 1 = Slow slew rate
3	DBUS Schmitt Trigger Enable	Sets the IO pad to operate with a Schmitt Trigger. $0 = normal mode, 1 = Schmitt$
5:4	CBUS Drive Current Strength	Sets the drive current for all CBUS pads 00 = 4mA, $01 = 8$ mA, $10 = 12$ mA, $11 = 16$ mA
6	CBUS Slew Rate	Sets the slew rate for all CBUS pads 0 = Fast slew rate, 1 = Slow slew rate
7	CBUS Schmitt Trigger Enable	Sets the pad to operate with a Schmitt Trigger. 0 = normal mode, 1 = Schmitt

Table 7.7: IO Control

7.8 Manufacturer String Descriptor

Bit	Mode	Description
7:0	Man. String Description Pointer	Address pointer to the location in the MTP memory of the string describing the manufacturer
15:8	Man. String Description Length	Length of the string
Table 7.8: Manufacturer String Descriptor		

Note that the string descriptor pointers are byte addressable.

7.9 Product String Descriptor

Bit	Mode	Description
7:0	Prod. String Description Pointer	Address pointer to the location in the MTP memory of the string describing the product
15:8 Prod. String Description Length Length of the string		
Table 7.9: Product String Descriptor		

Note that the string descriptor pointers are byte addressable.

7.10 Serial Number String Descriptor

Bit	Mode	Description
7:0	Serial No. String Description Pointer	Address pointer to the location in the MTP memory of the string describing the serial number
15:8	Serial No. String Description Length	Length of the string
Table 7.10: Serial Number String Descriptor		

Note that the string descriptor pointers are byte addressable.

7.11 I2C Address + Options

Bit	Mode	Description
14:0	I2C Slave Address	Programmable I2C Slave Address
15	Unused	

Table 7.11: I2C Slave Address

Bit	Mode	Description
7:0	I2C Device ID Byte 1	I2C Device ID
15:8	I2C Device ID Byte 2	I2C Device ID
Table 7.12: I2C Device ID		

Bit	Mode	Description
7:0	I2C Device ID Byte 3	I2C Device ID
_		

Table 7.13: I2C Device ID

7.12 CBUS[6:0] Mux Control

Each individual CBUS pin (up to 7 are available depending on the package) is controlled by a separate value, which represents the signal assigned to that pin as shown in the following tables. The mode corresponding to each value is also shown in Table 7.18.

Bit	Mode	Description
7:0	CBUS0 Mux Control	Maps various CBUS features to CBUS0 IO pad
15:8	CBUS1 Mux Control	Maps various CBUS features to CBUS1 IO pad
Table 7.14: CBUS[1:0] Control		

Bit	Mode	Description
7:0	CBUS2 Mux Control	Maps various CBUS features to CBUS2 IO pad
15:8	CBUS3 Mux Control	Maps various CBUS features to CBUS3 IO pad
Table 7 15: CBUS[3:2] Control		

Table 7.15: CBUS[3:2] Control

Bit	Mode	Description
7:0	CBUS4 Mux Control	Maps various CBUS features to CBUS4 IO pad
15:8	CBUS5 Mux Control	Maps various CBUS features to CBUS5 IO pad
Table 7.16: CBUS[5:4] Control		

Application Note AN_201 FT-X MTP memory Configuration 2.0

Document Reference No.: FT_000572 Clearance No.: 298

Bit	Mode	Description
7:0	CBUS6 Mux Control	Maps various CBUS features to CBUS6 IO pad
15:8	Unused	

Table 7.17: CBUS[6] Mux Control

The mode associated with each value is shown below.

MUX Sel	Mode	Description
		IO Pad is tri-stated
0	Tristate	Value = 00000000
1	RXLED#	Indicates that there is RX activity, can be used as status for LED
		Value = 00000001
2	TXLED#	Indicates that there is TX activity, can be used as status for LED
		Value = 00000010
3	TX&RXLED#	Indicates that there is TX + RX activity, can be used as status for LED
		Value = 00000011
4	PWREN#	Indicates that the USB has been configured when asserted low, and when suspended is de-asserted high
		Value = 00000100
5	SLEEP#	Asserted low when in USB suspend, typically used to power down external logic devices.
		Value = 00000101
6	Drive_0	Drive a constant 0
		Value = 00000110
7	Drive_1	Drive a constant 1
	_	Value = 00000111
8	GPIO	Standard IO port for CBUS bit bang mode
		Value = 00001000
9	TXDEN	Enable transmit for RS485 mode
		Value = 00001001
10	CLK24MHz	Output 24 MHz clock
		Value = 00001010
11	CLK12MHz	Output 12 MHz clock
		Value = 00001011 Output6 MHz clock
12	CLK6MHz	Value = 00001100
13	BCD_Charger	Battery Charger Detect, indicates when the device is connected to a dedicated battery charger host,

Document Reference No.: FT_000572 Clearance No.: 298

		active high.
		Value = 00001101
14	BCD_Charger#	Inverse of BCD Value = 00001110
15	I2C_TXE#	Transmit buffer empty, used to indicate to I2C master device status of the FT232EX transmit buffer Value = 00001111
16	I2C_RXF#	Receive buffer full, used to indicate to I2C master device status of FT232EX receive buffer Value = 00010000
17	VBUS_Sense	Detect when VBUS is present via the appropriate AC IO pad Value = 00010001
18	BitBang_WR#	Synchronous Bit Bang Write strobe Value = 00010010
19	BitBang_RD#	Synchronous Bit Bang Read strobe Value = 00010011
20	Time_Stamp	Toggle signal which changes state each time a USB SOF is received Value = 00010100
21	Keep_Awake#	Stop the part entering suspend when unplugged or suspended. This mode allows the MTP memory to be accessed over a peripheral, even although disconnected from the USB or suspended. Value = 00010101 CBUS Multiplexer Select

Table 7.18: CBUS Multiplexer Sele

8 Calculating the Checksum

This is a unique word stored in the MTP memory which is used to verify the contents of the non-user areas are correct. This single word checksum covers all of the check-summed areas of MTP.

At power on, the FT-X reads and decodes the checksum from the MTP memory, allowing it to confirm that the contents of the MTP memory are valid and can be used. If the checksum is invalid then the FT-X shall use default values which have been hard-coded in its logic instead.

An example of generating the checksum is shown below:

Variables Used: Checksum, TempChecksum, DataWord, AddressCounter

1 Initialise variables: Checksum = 0xAAAA, AddressCounter = 0x00

Write data and calculate checksum for words 0x00 to 0x11 (byte addresses 0x00 - 0x23)

- 2 Get next Dataword
- 3 Write Dataword to MTP at address = AddressCounter
- 4 Exclusive OR the current DataWord with the checksum TempChecksum = DataWord XOR Checksum
- 5 Rotate TempChecksum 1 bit to the Left (bit 0 -> bit 1, bit 1 -> bit 2 ... bit 15 -> bit 0) TempChecksum = TempChecksum rotated to left
- 6 Checksum = TempChecksum
- 7 Increment AddressCounter to point to next word
- 8 Is address 0x12? No -> Go To Step 2 Yes -> Go to Step 9

Write data and update the checksum for words 0x40 to 0x7E (byte addresses 0x80 - 0xFD)

- 9 AddressCounter = 0x40
- 10 Get next Dataword
- 11 Write Dataword to MTP at address = AddressCounter
- 12 Exclusive OR the current DataWord with the checksum TempChecksum = DataWord XOR Checksum
- 13 Rotate TempChecksum 1 bit to the Left (bit 0 -> bit 1, bit 1 -> bit 2 ... bit 15 -> bit 0) TempChecksum = TempChecksum rotated to left
- 14 Checksum = TempChecksum
- 15 Increment AddressCounter to point to next word
- 16 Is address 0x7F? No -> Go To Step 9 Yes -> Go to Step 17

Write the checksum

17 Write checksum to address 0x7F

8.1 Checksum Calculation Example

An example is shown below which will read the contents of an FT-X series device and calculate the checksum using the algorithm shown above.

```
// NOTE:
              This code is provided as an example only and is not supported or guaranteed by FTDI.
              It is the responsibility of the recipient/user to ensure the correct operation of
.
.//
              any software which is created based upon this example.
#include <windows.h>
#include <stdio.h>
#include "ftd2xx.h"
#include "stdafx.h"
int main(int argc, char* argv[])
{
                                                   // Variable for checksum value
       unsigned short Checksum = 0xAAAA;
       unsigned char AddressCounter = 0x00;
                                                  // Variable for address counter
                                                  // Used whilst calculating checksum
       unsigned short TempChecksum = 0x0000;
       unsigned short Data = 0x0000;
                                                   // Used to hold current data value
                                                   // Address at which checksum stored in FT-X
       unsigned short CheckSumLocation = 0x7F;
       FT HANDLE fthandle;
       FT STATUS status;
       printf("This program calculates the checksum of an FT-X series chip\n");
       // Open the first device connected to the PC
       status = FT Open(0, &fthandle);
       if(status != FT_OK)
              printf("open status not ok %d\n", status);
       else
              printf("open status ok %d\n", status);
       // Starting at Word address 0x00
       AddressCounter = 0 \times 00;
       // Calculation uses addresses from 0x00 up to 0x7E (checksum itself is located at 0x7F)
       while(AddressCounter < CheckSumLocation)</pre>
       {
              // Read the word from MTP and print it on the screen
              status = FT_ReadEE(fthandle, AddressCounter, &Data);
              printf("Memory location %x is... %x \n", AddressCounter, Data);
              // EXOR the data with the current checksum and then rotate one bit to the left
TempChecksum = (unsigned short)(Data ^ Checksum);
              Checksum = (unsigned short)((TempChecksum << 1) | (TempChecksum >> 15));
              // Go to next word address.
              // If we have reached word address 0x12, then skip forward to address 0x40 \,
              AddressCounter ++;
              if(AddressCounter == 0x12)
                     AddressCounter = 0x40;
       }
       // Checksum is now ready
       printf("\n\nChecksum is %x\n", Checksum);
       printf("\n\nPress a key to continue\n");
       // Wait for a key to be pressed
       getchar();
       // Close the device
       status = FT Close(&fthandle);
}
```

Note that the above example does not program the MTP or re-program the existing checksum in the device – it will only read the MTP contents and display the checksum calculated from them.

The screen-shots below illustrate the output of the program.

HANNANANANANANANANANANANANANANANANANANA	
and status all B	
open status ok 0 Memory location 0 is 0	
Memory location 1 is 403	
Memory location 2 is 6015	
Memory location 3 is 1000	
Memory location 4 is 2d80	
Memory location 5 is 8	
Memory location 6 is 0	
Memory location 7b is Ø	
Memory location 7c is 0	
Memory location 7d is0 Memory location 7e is0	
nemory location ve is 0	
Checksum is 6fff	l .
	l .
Press a key to continue	

Figure 8.1: Screen shot taken from the sample code

When developing applications which re-calculate the checksum, the value obtained can be checked against that shown in FT_Prog for the same device. Note that the actual data is stored in byte-reversed format and hence the checksum shows as FF6F in FT_Prog's memory window.

FT_Prog can be downloaded free from the FTDI website (see Appendix A – References)

FTDI - FT Prog - Device: 0 [Loc ID:0x3	1]			×						
A EEPROM Y Flash ROM										
<u>File D</u> evices <u>H</u> elp	· · · · · · · · · · · · · · · · · · ·	Word								
) 🖆 🖫 🗈 - 👂 🥖 📼	/	0000:						0800		A00A
	/	0008:	AA1E	C812	2200	0000	0000	0808	0808	0000
Device Tree	Property Value	0010:	0000	0000	0000	0000	0000	0000	0000	0000
E - FT EEPROM	Chip Type: /FT X Se	0018:	0000	0000	0000	0000	0000	0000	0000	0000
	(/ / / / / / / / / / / / / / / / / / /	0020:	0000	0000	0000	0000	0000	0000	0000	0000
	Vendor ID: / 0x0403	0028:	0000	0000	0000	0000	0000	0000	0000	0000
USB Config Descriptor	Product ID: / 0x6015	0030:	0000			0000	0000	0000		
USB String Descriptors		0000			0000		0000	0000	0000	
Manufacturer	Product Description: UMFT23									
Product Description SerialNumber Enabled	Serial Number: , FTX235F	0040:			0100		99B0	4000	0000	
	i i	0048:				5655	3559	544D		0000
SerialNumberPrefix	Property /	0050:	0A03	4600	5400	4400	4900	1E03	5500	4D00
SerialNumber AutoGene	FTEEPROM	0058:	4600	5400	3200	3300	3100	5800	4500	2000
⇒ Hardware Specific	/	0060:	4600	5400	4400	4900	1203	4600	5400	5800
USB Suspend VBus	Structural representation of the co	0068:	3200	3300	3500	5200	5300	0000	0000	0000
RS485 Echo Suppress	an FTD/ device.	0070:	0000	0000	0000	0000	0000	0000	0000	0000
🖃 🔿 Port A	i i	0078:								
Hardware		0070.	0000	0000	0000	0000	0000	0000	00000	
	/ /									
🖃 🔿 Battery Charge Detect	1									11
> Enable	Device Output									1
	Read EEPROM Device 0			~					1	
Deactivate Sleep	Word								10	
🖃 🔿 Invert RS232 Signals	0000: 0000 0304 15,60 0010 803 0008: AA1E C812 2200 0000 000							1		
TXD		00 0808 0808 00 0000 0000						10		
RXD	0018: 0000 0000 0000 0000 000						1			
RTS	0020: 0000 0000 0000 0000 000			3			10			
→ CTS						1				
→ DTR	0038: 0000 0000 0000 0000 000				Mate					
→ DSR	0040: 1036 ECC9 0100 D3E6 99B0 4000 0000 0000 Note: Ensure that the device is not									
	0048: /0000 0000 4442 5655 355 0050/ 0A03 4600 5400 4400 490				open	in ar	iy oth	er app	olicati	ons (such
→ RI	0056: 4600 5400 3200 3300 310	00 5800 4500	2000	1	the e	exami	ole co	de ab	ove) k	pefore
E → CBUS Signals	0060: 4600 5400 4400 4900 120			<u>s</u> 1						
Ready size size size size size size size size										
Ready					can d	oniy b	e ope	nea b	y one	applicatio

Figure 8.2: FT Prog screenshot and full memory window contents

9 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited Unit 1, 2 Seaward Place, Centurion Business Park Glasgow G41 1HH United Kingdom Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758

E-mail (Sales) E-mail (Support) E-mail (General Enquiries)

sales1@ftdichip.com support1@ftdichip.com admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan) 2F, No. 516, Sec. 1, NeiHu Road Taipei 114 Taiwan , R.O.C. Tel: +886 (0) 2 8791 3570 Fax: +886 (0) 2 8791 3576

E-mail (Sales) E-mail (Support) E-mail (General Enquiries) tw.sales1@ftdichip.com tw.support1@ftdichip.com tw.admin1@ftdichip.com

Branch Office - Tigard, Oregon, USA

Future Technology Devices International Limited (USA) 7130 SW Fir Loop Tigard, OR 97223-8160 USA Tel: +1 (503) 547 0988 Fax: +1 (503) 547 0987

E-Mail (Sales) E-Mail (Support) E-Mail (General Enquiries) us.sales@ftdichip.com us.support@ftdichip.com us.admin@ftdichip.com

Branch Office - Shanghai, China

Future Technology Devices International Limited (China) Room 1103, No. 666 West Huaihai Road, Shanghai, 200052 China Tel: +86 21 62351596 Fax: +86 21 62351595

E-mail (Sales) E-mail (Support) E-mail (General Enquiries) cn.sales@ftdichip.com cn.support@ftdichip.com cn.admin@ftdichip.com

Web Site

http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

Appendix A – References

Document References

- [1] FT_Prog utility for programming the MTP over USB http://www.ftdichip.com/Support/Utilities.htm#FT_Prog
- [2] D2xx Programmers Guide <u>http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_00_0071).pdf</u>
- [3] FT-X family product page http://www.ftdichip.com/FT-X.htm

Acronyms and Abbreviations

Terms	Description
CBUS	Configurable I/O pins on FTDI devices
FT1248	FTDI Dynamic Parallel/Serial bus (between 1 and 8 bits wide)
I2C	Inter-Integrated Circuit bus
МТР	Multi-Time Programmable memory
PID	Product ID (for example, the FT-X devices use 0x6015 by default)
USB	Universal Serial Bus
VID	Vendor ID (for example, FTDI's Vendor ID is 0x0403)

Appendix B – List of Tables & Figures

List of Tables

Table 7.1: Misc Config Bit Description	12
Table 7.2: USB VID	12
Table 7.3: USB PID	12
Table 7.4 BCD Release Number	12
Table 7.5: Max power and USB Configuration Options	12
Table 7.6: Device & Peripheral Control	13
Table 7.7: IO Control	14
Table 7.8: Manufacturer String Descriptor	14
Table 7.9: Product String Descriptor	14
Table 7.10: Serial Number String Descriptor	14
Table 7.11: I2C Slave Address	15
Table 7.12: I2C Device ID	15
Table 7.13: I2C Device ID	15
Table 7.14: CBUS[1:0] Control	15
Table 7.15: CBUS[3:2] Control	15
Table 7.16: CBUS[5:4] Control	15
Table 7.17: CBUS[6] Mux Control	16
Table 7.18: CBUS Multiplexer Select	17

List of Figures

Figure 3.1:	Simplified memory map for the FT-X6
Figure 3.2:	Memory map for the FT-X7
Figure 8.1:	Screen shot taken from the sample code
Figure 8.2:	FT Prog screenshot and full memory window contents

Appendix C – Revision History

Document Title: Document Reference No.: Clearance No.: Product Page: Document Feedback: AN_201 FT-X MTP memory Configuration FT_000572 298 http://www.ftdichip.com/FT-X.htm Send Feedback

Revision	Changes	Date
1.0	Initial Release	21/06/12
2.0	Updated Figure 3.2 to outline the correct area of memory which is checksummed.	18/12/13
	Corrected address range used in Section 8 checksum calculation.	
	Removed references to FT1248 as programming MTP over FT1248 not currently supported.	

Added example code in Section 8.1 to show calculation of a checksum