FTDI
Chip

Future Technology Devices International Ltd.

Application Note
AN _ 164

Vinculum-I11 USB Slave

Writing a Function Driver

Document Reference No.: FT_000373
Version 1.0
Issue Date: 2011-03-15

This application note provides an example of how to implement a function driver for
an FTDI Vinculum-11 (VNC2) USB Slave device. Sample source code is included.

Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): supportl@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2011 Future Technology Devices International Limited

mailto:support1@ftdichip.com�
http://www.ftdichip.com/�

FTDI Document Reference No.: FT_000373
Vinculum Il USB Slave Writing a Function Driver AN_164

Ch'p Application Note Version 1.0
Clearance No.: FTDI#207

Table of Contents

I INErOAUCTION ..t enes 3
1.1 Function Driver ArchiteCtureo 3
2 Function Driver Implementationcccciieeeenn . 4
2.1 INIIAlISAtION ..o 4
A © | o 1] o L 4
2.3 ClOS i 5
2.4 REAA ..o e 5
P25 T VAV 1 PP 5
2.6 HOCHl . e 6
P2 A 1) €=] o | o S 6
3 Function Driver SPecCifiCS. ..o 7
B ATEACK e 7
3.2 DetaACK . e 8
4 USB SPECITICS .ottt et et 9
4 N I 5 T =S o gl 1o) 1] 5= 9
4.1.1 (D ICIV ot B TS od g1 0] (o] 9
4.1.2 (@0 a1 iTo 18] ir= 1o Lo @ T 1= =] o o 1 {0 o 9
4.1.3 oY U=t g = Lot BT = LTl] o) o] PR 10
4.1.4 g T | T T 1 1 Al L=] o) 0 10
4.1.5 A=Y o TS 6 T I L= o]] o 1 o 10
4.1.6 Sy u g g ol B =T To] g o] o] g PRSP 11
4.2 TranSaACION TY PSS .ttt ettt ne s 11
4.2.1 CoNtrol TranSTerS. o e 11
4.2.2 (210 | I =1 0 E57= T A o] o PR 12
4.2.3 1 a) o= U] o I = U £ o o o o 13
4.2.4 ISOChronous TranSacCtioNso 14
4.3 DeVICE REQUESTS. ..ottt 14
4.3.1 Standard REQUESTES ... 15
4.3.2 L@ P TS =T 11 1<) 15
4.3.3 [VZ=] g To o] gl ay=To 18 1] £ PP 16

5 Contact Information..........ccooiiiiiiiiiii e 18
6 AppendiX A —ReferencCes.o 20

Copyright © 2011 Future Technology Devices International Limited 1

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

DOCUMENT RETEIENCES ...eeiiii e 20
Acronyms and AbDreviatioNS ... e 20
7 Appendix B — RevVvision HIStOrY ... 21

Copyright © 2011 Future Technology Devices International Limited 2

FTDI Document Reference No.: FT_000373
Vinculum Il USB Slave Writing a Function Driver AN_164

Chip Application Note Version 1.0
Clearance No.: FTDI#207

1 Introduction

FTDI provides drivers for the hardware peripherals on Vinculum-I1 (VNC2), and function drivers which
enhance the basic hardware driver functionality for a specific purpose [1]. Function drivers are layered
over hardware drivers using a standard interface, and are fully integrated with the Device Manager [2].

This application note describes how to implement a function driver for the VNC2 USB Slave [3]. FTDI
provides function drivers that allow VNC2 to appear to a host system as a HID device and as an FT232
device, and it is aspects of the implementation of these drivers that provide the basis of this discussion.
However, this information can be applied to the implementation of any function driver for the VNC2 USB
Slave.

The sample source code in this application note is provided as an example and is neither guaranteed nor
supported by FTDI.

This application note should be read in conjunction with [3] which contains full details of all USB Slave
I0CTLs referenced here.

1.1 Function Driver Architecture

The relationship between a function driver, its underlying peripheral driver, and the Device Manager is
shown in Figure 1.

Device Manager

e

Figure 1: Function Driver Architecture

Copyright © 2011 Future Technology Devices International Limited 3

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

2 Function Driver Implementation

A function driver has the standard device driver format that includes functions for init(), open(), close(),
read(), write(), ioctl() and interrupt(). This section describes device-independent implementation of
these functions.

2.1 Initialisation

In order to provide access to its device, a function driver has to signal its presence to DeviceManager.
The init() function typically allocates a context that is used with calls to the function driver, and registers
the function driver entry points. The following code fragment shows how init() is implemented for the
FT232 driver.

unsigned char usbslaveft232_init(uint8 vos_dev_num)

{

vos_driver_t *usbSlaveFt232_cb;
usbSlaveFt232_ context *ctx;

usbSlaveFt232_cb = vos_malloc(sizeof(vos_driver_t));
ctx = vos_malloc(sizeof(usbSlaveFt232_context));
// initialise context

// Set up function pointers for the driver
usbSlaveFt232_cb->flags = 0;

usbSlaveFt232 cb->read = usbSlaveFt232 read;
usbSlaveFt232_cb->write = usbSlaveFt232_write;
usbSlaveFt232_cb->ioctl = usbSlaveFt232_ioctl;
usbSlaveFt232_cb->interrupt = (PF_INT) NULL;
usbSlaveFt232_cb->open = (PF_OPEN) NULL;
usbSlaveFt232_cb->close = (PF_CLOSE) NULL;

// register with device manager
vos_dev_init(vos_dev_num, usbSlaveFt232_cb, ctx);

return USBSLAVEFT232_0OK;

Note that driver entry points are optional; it is permissible to pass NULL pointers for functions that are
not supported in the function driver. For example, interrupts are handled in the underlying USB Slave
driver, so the interrupt entry point should be NULL for a USB function driver.

2.2 Open

This function performs device-specific processing. It is called from DeviceManager as part of the handling
of a vos_dev_open() request. It is rare that this entry point is enabled for a device — indeed, FT232
doesn’t support it — but it could be used for context initialisation.

void functionDriver_open(functionDriver_context *ctx)

Copyright © 2011 Future Technology Devices International Limited 4

f r" FTDI Document Reference No.: FT_000373
! Vinculum Il USB Slave Writing a Function Driver AN_164
_‘\ Ch'p Application Note Version 1.0
' Clearance No.: FTDI#207

2.3 Close

This function performs device-specific processing. It is called from DeviceManager as part of the handling
of a vos_dev_close() request. This function is more common in function drivers than open() — although
FT232 doesn’t support it either — and it is normally used to close the device gracefully by putting it into a
known state.

void functionDriver_close(functionDriver_context *ctx)

2.4 Read

This function performs a read operation on the device. Its implementation in a function driver depends
on the device configuration. FT232 has a relatively simple configuration with one IN and one OUT
endpoint, and the read() function returns data from the OUT endpoint.

unsigned char usbSlaveFt232_read (
char *xfer,
unsigned short num_to_read,
unsigned short *num_read,
usbSlaveFt232_context *ctx)

{
*num_read = O;
while (num_to_read--) {
// copy character from OUT endpoint to xfer buffer
++*num_read;
}
return USBSLAVEFT232_0OK;
}
2.5 Write

This function performs a write operation on the device. Its implementation in a function driver depends
on the device configuration. FT232 has a relatively simple configuration with one IN and one OUT
endpoint, and the write() function passes data to the IN endpoint.

unsigned char usbSlaveFt232_write (
char *xfer,
unsigned short num_to_write,
unsigned short *num_written,
usbSlaveFt232_context *ctx)

{
*num_written = 0;
while (num_to_write--) {
// copy status (if necessary) and character
// from xfer buffer to IN endpoint
++*num_written;
}
return USBSLAVEFT232_0OK;
}

For FT232, note that the copy to the IN endpoint must take into account the proprietary format of IN
data.

Copyright © 2011 Future Technology Devices International Limited 5

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

2.6 loctl

This function performs device-specific request processing. The ioctl() function handles a different set of
requests for each device type, but some requests, for example attach() and detach(), are common to all
function drivers. In addition, by using the common_ioctl_cb_t type, a function driver can utilise a set of
requests that are common to all drivers, as the following example for FT232 demonstrates.

unsigned char usbSlaveFt232_ioctl(common_ioctl_cb_t *cb,usbSlaveFt232_context *ctx)

{

unsigned char status = USBSLAVEFT232_INVALID_PARAMETER;

switch (cb->ioctl_code) {

case VOS_I10CTL_USBSLAVEFT232_ATTACH:
status = usbSlaveFt232_attach((VOS_HANDLE)cb->set.data, ctx);
break;

case VOS_I10CTL_USBSLAVEFT232_DETACH:
usbSlaveFt232_detach(ctx);
status = USBSLAVEFT232_0OK;
break;

case VOS_I10CTL_USBSLAVEFT232_SET_LATENCY:
status = usbSlaveFt232_set_latency((unsigned char)cb->set.data, ctx);
break;

case VOS_I10CTL_COMMON_GET_RX_QUEUE_STATUS:
cb->get.queue_stat = usbSlaveFt232_get rx_queue_status(ctx);
status = USBSLAVEFT232_0K;
break;

default:
break;

}

return status;

}

VOS_IOCTL_USBSLAVEFT232_ATTACH is an example of a function driver attach() function, and
VOS_IOCTL_USBSLAVEFT232_DETACH is an example of a function driver detach() function. attach() and
detach() requests are described in detail in the next section.

VOS_IOCTL_USBSLAVEFT232_SET_LATENCY is an example of a device-specific request.

VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS is an example of a common request.
2.7 Interrupt

No interrupt entry point needs to be set for USB Slave function drivers. USB Slave interrupts are handled
in the underlying USB Slave driver.

Copyright © 2011 Future Technology Devices International Limited 6

f r" FTDI Document Reference No.: FT_000373

5 Vinculum Il USB Slave Writing a Function Driver AN_164
_‘\ Ch'p Application Note Version 1.0
- Clearance No.: FTDI#207

3 Function Driver Specifics

This section deals with implementation issues specific to function drivers.

By definition, a function driver is layered over another driver, so a function driver must be able to both
establish a connection to its underlying driver, and close that connection down. For these purposes,
function drivers implement attach() and detach() functions respectively, and these functions are
implemented as ioctl requests.

3.1 Attach

This function attaches a function driver to its underlying driver thus establishing a connection between
the two drivers. Although every function driver will have an attach() function, its implementation is
device-specific.

For FT232, the function driver is attached to the USB Slave driver using the ioctl request
VOS_IOCTL_USBSLAVEFT232_ATTACH. This function communicates with the USB Slave driver to obtain
handles for the function device endpoints; these handles are required by other requests that access the
function device endpoints. As a result, the device state is set to attached.

unsigned char usbSlaveFt232_attach(VOS_HANDLE handle, usbSlaveFt232_context *ctx)

{

usbslave_ioctl_cb_t iocb;

unsigned char status = USBSLAVEFT232_0OK;

// save usb slave handle

ctx->handle = handle;

if (Ictx->attached) {
iocb.ioctl_code = VOS_I0OCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;
iocb.ep = USBSLAVE_CONTROL_IN;
iocb.get = &ctx->in_ep0;
vos_dev_ioctl (ctx->handle,&iocb);
iocb.ioctl_code = VOS_I0OCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;
iocb.ep = USBSLAVE_CONTROL_OUT;
iocb.get = &ctx->out_epO;
vos_dev_ioctl (ctx->handle,&iocb);
iocb.ioctl_code = VOS_I0OCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE;
iocb.ep = 1;
iocb.get = &ctx->in_ep;
vos_dev_ioctl(ctx->handle,&iocb);
iocb.ioctl_code = VOS_I0CTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;
iocb.get = &ctx->out_ep;
vos_dev_ioctl(ctx->handle,&iocb);
ctx->attached = 1;

}

return status;

}

Before attaching a function driver to its underlying driver, a handle to the underlying driver must be
obtained. For FT232, the application code opens the required USB Slave port (A or B), and passes the
handle thus obtained in the VOS_I0CTL_USBSLAVEFT232_ATTACH request:

Copyright © 2011 Future Technology Devices International Limited 7

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

VOS_HANDLE hA;
VOS_HANDLE hFT232;

void main(void)

{
common_ioctl _cb_t ft232Attach;

init_devices();

// open USB Slave port A
hA = vos_dev_open(USBSA);

// open FT232BM
hFT232 = vos_dev_open(USBSFT232);

// attach FT232BM to USB Slave port A
Tt232Attach.ioctl_code = VOS_IOCTL_USBSLAVEFT232_ATTACH;

ft232Attach.set.data = hA;
vos_dev_ioctl (hFT232,&Ft232Attach);

vos_start_scheduler();
main_loop:

goto main_loop;

3.2 Detach

This function detaches a function driver from its underlying driver thus closing down the connection
between the two drivers. Although every function driver will have an detach() function, its
implementation is device-specific.

For FT232, the function driver is detached from the USB Slave driver using the ioctl request
VOS_IOCTL_USBSLAVEFT232_DETACH. The implementation is very simple in this case — the device state
is set to not attached.

void usbSlaveFt232_detach(usbSlaveFt232_context *ctx)
{

ctx->attached = 0;

return;

Copyright © 2011 Future Technology Devices International Limited 8

@ FTDI
Chip

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164

Application Note Version 1.0
Clearance No.: FTDI#207

4 USB Specifics

This section deals with general implementation issues concerning USB devices.

4.1 Descriptors

The function of a USB device is defined by its set of standard USB descriptors. Descriptor types are
defined in the header file USB.h in the VNC2 toolchain, and this section contains example descriptors for

an FT232 device.

4.1.1 Device Descriptor

The device descriptor is defined in USB.h as a structure of type usb_deviceDescriptor_t. For further
details, see Section 9.6.1 in [4].

For an FT232 device, the default device descriptor is:

usb_deviceDescriptor_t
FT232_device_descriptor = {

18,
1,
0x0200,

/ blLength

bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize0
idVendor
idProduct
bcdDevice
iManufacturer
iProduct
iSerialNumber

bNumConfigurations

4.1.2 Configuration Descriptor

The configuration descriptor is defined in USB.h as a structure of type
usb_deviceConfigurationDescriptor_t. For further details, see Section 9.6.3 in [4].

For an FT232 device, the default configuration descriptor is:

usb_deviceConfigurationDescriptor_t
FT232_configuration_descriptor = {

9

USB_DESCRIPTOR_TYPE_CONFIGURATION,

0x0020,

bLength
bDescriptorType
wTotalLength
bNumInterfaces
bConfigurationValue
iConfiguration
bmAttributes
bMaxPower

Copyright © 2011 Future Technology Devices International Limited 9

f r" FTDI Document Reference No.: FT_000373

5 Vinculum Il USB Slave Writing a Function Driver AN_164
_‘\ Ch'p Application Note Version 1.0
- Clearance No.: FTDI#207

4.1.3 Interface Descriptor

The interface descriptor is defined in USB.h as a structure of type usb_devicelnterfaceDescriptor_t. For
further details, see Section 9.6.5 in [4].

For an FT232 device, the default interface descriptor is:

usb_devicelnterfaceDescriptor_t
FT232_interface_descriptor = {

9, // blLength
USB_DESCRIPTOR_TYPE_INTERFACE, // bDescriptorType

0, // blnterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
USB_CLASS VENDOR, // binterfaceClass
USB_SUBCLASS_ANY, // blnterfaceSubClass
USB_PROTOCOL_ANY, // binterfaceProtocol
2 // ilnterface

4.1.4 Endpoint Descriptor

The endpoint descriptor is defined in USB.h as a structure of type usb_deviceEndpointDescriptor_t. For
further details, see Section 9.6.6 in [4].

For an FT232 device, the default endpoint descriptor for its BULK OUT endpoint is:

usb_deviceEndpointDescriptor_t
FT232_out_endpoint_descriptor = {
7 // blLength

USB_DESCRIPTOR_TYPE_ENDPOINT, // bDescriptorType
0x02, // bEndpointAddress
2, // bmAttributes
0x0040, // wMaxPacketSize
0 // blnterval

4.1.5 Zero String Descriptor

The zero string descriptor is defined in USB.h as a structure of type usb_deviceStringDescriptorZero_t.
For further details, see Section 9.6.7 in [4].

For an FT232 device, the default zero string descriptor is:

usb_deviceStringDescriptorZero_t

FT232_zero_string_descriptor = {
4, // blLength
USB_DESCRIPTOR_TYPE_STRING, // bDescriptorType
USB_LANGID_ENGLISH_UNITED_STATES // LANGID code zero

Copyright © 2011 Future Technology Devices International Limited 10

@ FTDI
Chip

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

4.1.6 String Descriptor

The string descriptor is defined in USB.h as a structure of type usb_deviceStringDescriptor_t. For further
details, see Section 9.6.7 in [4].

For an FT232 device, an example string descriptor is the manufacturer string descriptor, and its default
value is:

usb_deviceStringDescriptor_t
FT232_manufacturer_string_descriptor = {

10, // blLength
USB_DESCRIPTOR_TYPE_STRING, // bDescriptorType
0x0046, // bString

0x0054,

0x004d,

0x0049

4.2 Transaction Types

A USB Slave function driver must handle each of the USB transaction formats.

4.2.1 Control Transfers

Control transfers have a minimum of two stages: Setup and Status; a Data stage between Setup and
Status is optional. During the Setup phase, the host sends a SETUP packet to the control endpoint. The
Data phase, if present, consists of one or more IN or OUT transactions to EPO. The Status stage consists
of a single transaction on EPO: if there is a Data phase, this transaction follows a change of direction of
the data flow; if there was no Data phase, this is a single IN transaction.

4.2.1.1 Receiving a SETUP Packet

Typically, the function driver includes a dedicated thread that handles SETUP packets. The thread sends
a VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD request to the USB Slave driver. This is a blocking
request, and returns when a SETUP packet has been received on the USB Slave port. The thread parses
the SETUP packet and processes it accordingly.

The SETUP packet may represent a Standard, Class or Vendor request. Different devices handle their
own specific combination of requests. The implementation of a thread that demonstrates the general
case is shown in the following code:

void function_driver_setup(usbSlaveFt232_context *ctx)

{

usbslave_ioctl_cb_t iocb;
uint8 bmRequestType;
uint8 status;

while (1) {
iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD;
iocb.request._setup_or_bulk_transfer_buffer = &ctx->setup_buffer[0];
iocb.request.setup_or_bulk_transfer.size = 9;
vos_dev_ioctl (ctx->handle,&iocb);

bmRequestType = ctx->setup_buffer[0] & O0x60;
ifT (bmRequestType == USB_BMREQUESTTYPE_STANDARD) {

Copyright © 2011 Future Technology Devices International Limited 11

FTDI Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164

Chlp Application Note Version 1.0

Clearance No.: FTDI#207

status = standard_request(ctx);

else if (bmRequestType == USB_BMREQUESTTYPE_CLASS) {
status = class_request(ctx);

else if (bmRequestType == USB_BMREQUESTTYPE_VENDOR) {
status = vendor_request(ctx);

}

return;

4.2.1.2 Data Stage

If present, the Data stage consists of a data transfer on either the control IN endpoint or the control OUT

endpoint. For example, here is a code fragment that demonstrates sending two bytes on the control IN
endpoint in response to a SETUP packet:

void send_response(usbSlaveFt232_context *ctx)
{

uint8 b[2] = { OxFfF, OxFf };

usbslave ioctl_cb t iocb;

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_SETUP_TRANSFER;
iocb.handle = ctx->in_ep0;
iocb.request.setup_or_bulk_transfer_buffer =
iocb.request.setup_or_bulk_transfer.size = 2;
vos_dev_ioctl (ctx->handle,&iocb);

b;

4.2.1.3 Status Stage

If the SETUP transaction has no Data stage, the Status stage consists of a single IN transaction. This

takes the form of a zero-length data packet to the control IN endpoint (EPO), as shown in the following
code fragment:

void send_zldp(usbSlaveFt232_context *ctx)

{
usbslave_ioctl_cb_t iocb;
iocb.ioctl_code = VOS_I0CTL_USBSLAVE_SETUP_TRANSFER;
iocb_handle = ctx->in_ep0;
iocb.request.setup_or_bulk_transfer_buffer = (void *) O;
iocb.request.setup_or_bulk_transfer.size = 0;
vos_dev_ioctl(ctx->handle,&iocb);

}

If the Data stage consists of OUTs, the Status stage changes the direction of the data flow and consists of
a single IN transaction.

If the Data stage consists of IN, the Status stage changes the direction of the data flow and consists of a
single OUT transaction.

4.2.2 Bulk Transactions

Handles to the bulk endpoints are obtained. This example is for a device with two bulk endpoints, one IN
endpoint and one OUT endpoint; the endpoint addresses are 0x81 and 0x02 respectively. Note that

Copyright © 2011 Future Technology Devices International Limited 12

f ;' FTDI Document Reference No.: FT_000373

1 Vinculum Il USB Slave Writing a Function Driver AN_164
_ 0\ Ch'p Application Note Version 1.0
- Clearance No.: FTDI#207

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE does not require the Direction bit of the
endpoint address.

usbslave_ioctl _cb_t iocb;

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_GET_BULK_ IN_ENDPOINT_HANDLE;
iocb.ep = 1;

iocb.get = &ctx->in_ep;

vos_dev_ioctl(ctx->handle,&ioch);

iocb.ioctl_code = VOS_I0CTL_USBSLAVE GET_BULK_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;

iocb.get = &ctx->out_ep;

vos_dev_ioctl(ctx->handle,&iocb);

Data transfer is performed by a call to VOS_IOCTL_USBSLAVE_TRANSFER. For bulk IN transfers:

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_TRANSFER;

iocb.handle = ctx->in_ep;

iocb.request.setup_or_bulk_transfer.buffer = &ctx->epl in_buffer[0];
iocb.request.setup_or_bulk_transfer.size = (intl6) ctx->in_cnt;
vos_dev_ioctl(ctx->handle,&iocb);

For bulk OUT transfers:

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_TRANSFER;

iocb.handle = ctx->out_ep;
iocb.request.setup_or_bulk_transfer.buffer = ctx->ep2_out buffer;
iocb.request.setup_or_bulk transfer.size = OUT_EP_ BUF _LEN;
iocb.request.setup_or_bulk _transfer.bytes transferred = O;
vos_dev_ioctl(ctx->handle,&iocb);

4.2.3 Interrupt Transactions

Handles to the interrupt endpoints are obtained. This example is for a device with an interrupt IN
endpoint at address 0x81. Note that VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE does not
require the Direction bit of the endpoint address.

usbslave_ioctl _cb_t iocb;

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE;
iocb.ep = 1;

ioch.get = &ctx->in_ep;

vos_dev_ioctl (ctx->handle,&ioch);

Data transfer is performed by a call to VOS_I10CTL_USBSLAVE_TRANSFER:

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_TRANSFER;

iocb.handle = ctx->in_ep;

iocb.request.setup_or_bulk_transfer.buffer = &ctx->ep_in_buffer[0];
iocb.request.setup_or_bulk_transfer.size = (intl6) 8; // Report length
vos_dev_ioctl(ctx->handle,&iocb);

Copyright © 2011 Future Technology Devices International Limited 13

f ;' FTDI Document Reference No.: FT_000373

1 Vinculum Il USB Slave Writing a Function Driver AN_164
_ 0\ Ch'p Application Note Version 1.0
- Clearance No.: FTDI#207

4.2.4 Isochronous Transactions

Handles to the isochronous endpoints are obtained. This example is for a device with two isochronous
endpoints, one IN endpoint and one OUT endpoint; the endpoint addresses are 0x81 and 0x02
respectively. Note that VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE does not require the
Direction bit of the endpoint address.

usbslave_ioctl _cb_t iocb;

iocb.ioctl _code = VOS_I0OCTL_USBSLAVE GET_I1SO_IN_ENDPOINT_HANDLE;
iocb.ep = 1;

iocb.get = &ctx->in_ep;

vos_dev_ioctl(ctx->handle,&ioch);

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_GET_I1SO_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;

iocb.get = &ctx->out_ep;

vos_dev_ioctl(ctx->handle,&iocb);

Data transfer is performed by a call to VOS_IOCTL_USBSLAVE_TRANSFER. For isochronous IN transfers:

iocb.ioctl_code = VOS_I0CTL_USBSLAVE TRANSFER;

iocb.handle = ctx->in_ep;

iocb.request.setup_or_bulk_transfer.buffer = &ctx->epl in_buffer[0];
iocb.request.setup_or_bulk_transfer.size = IN_TRANSFER_SIZE;
vos_dev_ioctl(ctx->handle,&iocb);

For isochronous OUT transfers:

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_TRANSFER;

iocb.handle = ctx->out_ep;
iocb.request.setup_or_bulk_transfer.buffer = ctx->ep2_out buffer;
iocb.request.setup_or_bulk _transfer.size = OUT_TRANSFER_SIZE;
iocb.request.setup_or_bulk_transfer_bytes transferred = O;
vos_dev_ioctl(ctx->handle,&iocb);

4.3 Device Requests

USB device requests are handled in a USB Slave function driver. The reception of SETUP packets was
described in the previous section. This section deals with processing the SETUP packets and handling
device requests.

The SETUP packet may represent a Standard, Class or Vendor request. For FT232, there are no Class
requests, so its thread only handles Standard and Vendor requests; for HID, there are no Vendor
requests, so its thread only handles Standard and Class requests. The implementation of a thread that
demonstrates the general case is shown in the following code:

void function_driver_setup(usbSlaveFt232_context *ctx)
{

usbslave_ioctl_cb_t iocb;

uint8 bmRequestType;

uint8 status;

while (1) {
ioch.ioctl_code = VOS_I0CTL_USBSLAVE_WAIT_SETUP_RCVD;
iocb.request._setup_or_bulk_transfer_buffer = &ctx->setup_buffer[0];
iocb.request.setup_or_bulk_transfer.size = 9;

Copyright © 2011 Future Technology Devices International Limited 14

@ FTDI
Chip

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

vos_dev_ioctl (ctx->handle,&iocb);

bmRequestType
it (bmRequestType
standard_request(ctx);

}

ctx->setup_buffer[0] & 0x60;

== USB_BMREQUESTTYPE_STANDARD) {

else if (bmRequestType == USB_BMREQUESTTYPE_CLASS) {

}

class_request(ctx);

else if (bmRequestType == USB_BMREQUESTTYPE_VENDOR) {

}
}

return;

4.3.1 Standard Requests

vendor_request(ctx);

Standard requests are defined in Chapter 9 of the USB specification [4]. Devices must respond to
Standard requests. The Standard requests that FT232 responds to are shown in the following code:

unsigned char standard_request(usbSlaveFt232_context *ctx)

{
unsigned char status = USBSLAVE_OK;

unsigned char *p;
unsigned char bReq;

p = ctx->setup_buffer;
bReq = ctx->setup_buffer[1];

switch (bReq) {

case USB_REQUEST_CODE_SET_ADDRESS :
set_address_request(ctx,*(p+2));
break;

case USB_REQUEST_CODE_GET_DESCRIPTOR :
get_descriptor_request(ctx);
break;

case USB_REQUEST CODE_SET CONFIGURATION :
set_configuration_request(ctx,*(p+2));
break;

case USB_REQUEST CODE_CLEAR_FEATURE :
clear_feature_request(ctx);
break;

default:
break;
T

return status;

4.3.2 Class Requests

Each USB device class supports its own set of class requests. For FT232, there are no Class requests;
HID class requests are defined in [5]. The class requests handler for a HID device is shown in the
following code:

unsigned char HID _class_request(usbSlaveHIDKbd_ context *ctx)

{

Copyright © 2011 Future Technology Devices International Limited 15

f r" FTDI Document Reference No.: FT_000373
5 Vinculum Il USB Slave Writing a Function Driver AN_164
_‘\ Ch'p Application Note Version 1.0
' Clearance No.: FTDI#207

usb_deviceRequest_t *devReq;
usbslave ioctl _cb_t iocb;

unsigned char status = USBSLAVE OK;
unsigned char bReq;

devReq = (usb_deviceRequest_t *)ctx->setup buffer;
bReq = devReg->bRequest;

switch (bReq) {

case USB HID REQUEST CODE_SET IDLE:
class_ack(ctx);
break;

case USB_HID_REQUEST_CODE_SET_PROTOCOL:
class_ack(ctx);
break;

case USB_HID_REQUEST_CODE_SET_REPORT:
// dummy read of one byte
class_control_out(ctx, (signed)é&status, 1);
ctx->report = 1;
break;

default:
// force a protocol stall
set_control_ep_halt(ctx);
break;

}

return status;

}

4.3.3 Vendor Requests

Vendor requests are device-specific requests. Each device type has its own set of Vendor requests. For
FT232, its Vendor request implementation is as follows:

// vendor command codes
#define FTD1_GET_MODEM_STATUS 0x05

#define FTDI_READ_EE 0x90

void ft232_zldp(usbSlaveFt232_context *ctx)

{
usbslave_ioctl_cb_t iocb;
iocb.ioctl_code = VOS_I0CTL_USBSLAVE_SETUP_TRANSFER;
iocb_handle = ctx->in_ep0;
iocb.request.setup_or_bulk_transfer_buffer = (void *) O;
iocb.request.setup_or_bulk_transfer.size = 0;
vos_dev_ioctl(ctx->handle,&iocbh);

}

void ft232_read_ee(usbSlaveFt232_context *ctx)

{

uint8 b[2] = { Oxff, OxFff };
usbslave_ioctl_cb_t iocb;

Copyright © 2011 Future Technology Devices International Limited 16

FTDI Document Reference No.: FT_000373
Vinculum Il USB Slave Writing a Function Driver AN_164

Ch'p Application Note Version 1.0
Clearance No.: FTDI#207

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_SETUP_TRANSFER;
iocb.handle = ctx->in_ep0;
iocb.request._setup_or_bulk_transfer_buffer =
iocb.request.setup_or_bulk_transfer.size = 2;
vos_dev_ioctl(ctx->handle,&iocb);

b;

}

void ft232_get_modem_status(usbSlaveFt232_context *ctx)

{
uint8 b[2] = { 0x31, 0x60 };
usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_I0CTL_USBSLAVE_SETUP_TRANSFER;
iocb_handle = ctx->in_ep0;
iocb.request.setup_or_bulk_transfer_buffer = b
iocb.request.setup_or_bulk_transfer.size = 2;
vos_dev_ioctl(ctx->handle,&iocbh);

}

uint8 Ft232_vendor_request(usbSlaveFt232_context *ctx)

{
switch (ctx->setup_buffer[1l]) {

case FTDI_READ_EE :
ft232_read_ee(ctx);
break;

case FTDI_GET_MODEM_STATUS :
ft232_get_modem_status(ctx);
break;

default:

ft232_zIldp(ctx);
break;

}
return USBSLAVEFT232_0K;

The functions ft232_read_ee() and ft232_get_modem_status() show how to send data to the host by
performing a VOS_I0OCTL_USBSLAVE_SETUP_TRANSFER request on the control IN endpoint.

The function ft232_zdIlp() shows how to send a zero-length data packet to the host using a
VOS_IOCTL_USBSLAVE_SETUP_TRANSFER request on the control IN endpoint.

Copyright © 2011 Future Technology Devices International Limited 17

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

5 Contact Information
Head Office — Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH

United Kingdom

Tel: +44 (0) 141 429 2777

Fax: +44 (0) 141 429 2758

E-mail (Sales) salesl@ftdichip.com
E-mail (Support) supportl@ftdichip.com
E-mail (General Enquiries) adminl@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office — Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114

Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570

Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.salesl@ftdichip.com
E-mail (Support) tw.supportl@ftdichip.com
E-mail (General Enquiries) tw.adminl@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office — Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600

Hillsboro, OR 97123-5803

USA

Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office — Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,

Shanghai, 200051

China

Tel: +86 21 62351596

Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Copyright © 2011 Future Technology Devices International Limited 18

mailto:sales1@ftdichip.com�
mailto:support1@ftdichip.com�
mailto:admin1@ftdichip.com�
http://www.ftdichip.com/�
http://www.ftdichip.com/�
mailto:tw.sales1@ftdichip.com�
mailto:tw.support1@ftdichip.com�
mailto:tw.admin1@ftdichip.com�
http://www.ftdichip.com/�
mailto:us.sales@ftdichip.com�
mailto:us.support@ftdichip.com�
mailto:us.admin@ftdichip.com�
http://www.ftdichip.com/�
mailto:cn.sales@ftdichip.com�
mailto:cn.support@ftdichip.com�
mailto:cn.admin@ftdichip.com�
http://www.ftdichip.com/�

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future
Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety,
regulatory and system-level performance requirements. All application-related information in this document (including
application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has
taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability
for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or
safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from
any and all damages, claims, suits or expense resulting from such use. This document is subject to change without
notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document.
Neither the whole nor any part of the information contained in, or the product described in this document, may be
adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder.
Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH,
United Kingdom. Scotland Registered Company Number: SC136640

Copyright © 2011 Future Technology Devices International Limited 19

http://ftdichip.com/�

Document Reference No.: FT_000373

Vinculum Il USB Slave Writing a Function Driver AN_164
Application Note Version 1.0

Clearance No.: FTDI#207

6 Appendix A — References

Document References

[1] FTDI Software Application Development, Vinculum Il Firmware Overview, FTDI, 2009. Available from
http://www.ftdichip.com/Support/Documents/AppNotes.htm

[2] FTDI Software Application Development, Vinculum Il Driver Architecture, FTDI, 2009. Available from
http://www.ftdichip.com/Support/Documents/AppNotes.htm

[3] FTDI Application Note AN_172, Vinculum Il Using the USB Slave Driver, FTDI, 2011. Available from
http://www.ftdichip.com/Support/Documents/AppNotes.htm

[4] Universal Serial Bus Specification Revision 2.0, USB Implementers Forum, 2000. Available from
http://www.usb.org/developers/docs

[5] Device Class Definitions for Human Interface Devices (HID) Version 1.11, USB Implementers Forum,
2001. Available from http://www.usb.org/developers/hidpage/

Acronyms and Abbreviations

Terms Description

FT232 VNC2 USB Slave FT232 function driver.
VOS Vinculum Operating System

IDE Integrated Development Environment
VNC2 Vinculum 11

Copyright © 2011 Future Technology Devices International Limited 20

http://www.ftdichip.com/Support/Documents/AppNotes.htm�
http://www.ftdichip.com/Support/Documents/AppNotes.htm�
http://www.ftdichip.com/Support/Documents/AppNotes.htm�
http://www.usb.org/developers/docs�
http://www.usb.org/developers/hidpage/�

FTDI Document Reference No.: FT_000373
Vinculum Il USB Slave Writing a Function Driver AN_164

Chip Application Note Version 1.0
Clearance No.: FTDI#207

7 Appendix B — Revision History

Revision Changes Date

1.0 Initial Release 2011-03-15

Copyright © 2011 Future Technology Devices International Limited 21

	1 Introduction
	1.1 Function Driver Architecture

	2 Function Driver Implementation
	2.1 Initialisation
	2.2 Open
	2.3 Close
	2.4 Read
	2.5 Write
	2.6 Ioctl
	2.7 Interrupt

	3 Function Driver Specifics
	3.1 Attach
	3.2 Detach

	4 USB Specifics
	4.1 Descriptors
	4.1.1 Device Descriptor
	4.1.2 Configuration Descriptor
	4.1.3 Interface Descriptor
	4.1.4 Endpoint Descriptor
	4.1.5 Zero String Descriptor
	4.1.6 String Descriptor

	4.2 Transaction Types
	4.2.1 Control Transfers
	4.2.1.1 Receiving a SETUP Packet
	4.2.1.2 Data Stage
	4.2.1.3 Status Stage

	4.2.2 Bulk Transactions
	4.2.3 Interrupt Transactions
	4.2.4 Isochronous Transactions

	4.3 Device Requests
	4.3.1 Standard Requests
	4.3.2 Class Requests
	4.3.3 Vendor Requests

	5 Contact Information
	6 Appendix A – References
	Document References
	Acronyms and Abbreviations

	7 Appendix B – Revision History

