
Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2010 Future Technology Devices International Limited

Future Technology Devices International Ltd.

Application Note

AN_135

FTDI MPSSE Basics

Document Reference No.: FT_000208

Version 1.1

Issue Date: 2010-03-12

The FTDI Multi-Protocol Synchronous Serial Engine (MPSSE) provides a flexible
means of interfacing synchronous serial devices to a USB port. This document
provides a basic discussion of the FTDI MPSSE, how to configure it for use and

establish the signalling required for synchronous communication.

 Copyright © 2010 Future Technology Devices International Limited 2

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

Table of Contents

1 Introduction .. 4

1.1 Required Components ... 4

1.2 Master/Slave Association ... 4

2 Hardware Connections .. 5

2.1 Suggested Connections ... 7

2.1.1 SPI – Single Slave ... 7

2.1.2 SPI – Multiple Slaves ... 7

2.1.3 I2C – Single Slave .. 8

2.1.4 I2C – Multiple Slaves .. 8

2.1.5 JTAG .. 8

3 Serial Protocol Configuration .. 9

3.1 MSB/LSB & Data Length ... 9

3.2 Clocks ... 9

3.2.1 Divisors .. 9

3.2.2 Edges ...10

3.2.3 Special Cases ...10

3.3 Miscellaneous Details .. 11

3.3.1 Initial Pin States ...11

3.3.2 Buffer Sizes ...11

4 Software Configuration ... 12

4.1 Confirm device existence and open handle 12

4.2 Configure FTDI Port For MPSSE Use .. 12

4.3 Configure MPSSE ... 13

4.3.1 Synchronization & Bad Command Detection ...13

4.3.2 MPSSE Setup ...13

4.4 Serial Communications ... 13

4.5 GPIO Access .. 14

4.6 Close handle ... 14

5 Example Program .. 15

5.1 Confirm device existence and open handle 15

5.2 Configure FTDI Port For MPSSE Use .. 16

5.3 Configure the FTDI MPSSE .. 16

5.3.1 Synchronization & Bad Command Detection ...16

5.3.2 MPSSE Setup ...18

 Copyright © 2010 Future Technology Devices International Limited 3

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

5.4 Serial Communications ... 19

5.5 GPIO Access .. 22

5.6 Close handle ... 23

6 Summary ... 24

7 Contact Information .. 25

Appendix A – References ... 26

Document References ... 26

Acronyms and Abbreviations ... 26

Appendix B – List of Tables & Figures 27

Appendix C – Revision History ... 28

 Copyright © 2010 Future Technology Devices International Limited 4

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

1 Introduction

FTDI’s Multi-Protocol Synchronous Serial Engine (MPSSE) provides a flexible means of interfacing
synchronous serial devices to a USB port. By being “Multi-Protocol”, the MPSSE allows communication
with many different types of synchronous devices, the most popular being SPI, I2C and JTAG. Data
formatting and clock synchronization can be configured in a variety of ways to satisfy almost any
requirement. In addition to the serial data pins, additional GPIO signals are available. This document
outlines the basics in configuring the MPSSE for use and demonstrates some of the available modes of
operation.

1.1 Required Components

Use of the MPSSE requires certain components be in place, both software and hardware:

1) FTDI FT-series device with the MPSSE – At the time of publication, FTDI manufactures three
devices with the MPSSE block:

a. FT2232D – USB 2.0 Full-Speed Dual UART/FIFO with a single MPSSE (6Mbps, maximum)
b. FT2232H – USB 2.0 Hi-Speed Dual UART/FIFO with two MPSSEs (30Mbps each,

maximum)
c. FT4232H – USB 2.0 Hi-Speed Quad UART with two MPSSEs (30Mbps each, maximum)

2) FTDI D2XX Device Drivers
a. The latest D2XX device drivers are required. Multiple operating systems are supported.

See http://ftdichip.com/Drivers/D2XX.htm for the latest downloads. Installation guides

for various operating systems are available at the FTDI Website.
3) Documentation

a. Datasheet for the FTDI FT-series device with the MPSSE
b. D2XX Programmers Guide
c. AN_108 Command Processor for MPSSE and MCU Host Bus Emulation Modes

Although there are programming examples and libraries on the FTDI web site specific to SPI, I2C and
JTAG, it is often easier to access the MPSSE directly with the D2XX calls. This direct access will be

covered through the examples presented here.

The code examples contained within this document are for demonstration purposes only and FTDI extend
no responsibility or guarantees regarding the correctness of this code.

1.2 Master/Slave Association

The MPSSE is always a master controller for the selected synchronous interface. As such, it generates
the clock and any required interface select / chip-select signals. The MPSSE does not operate as a slave.

http://ftdichip.com/Drivers/D2XX.htm
http://ftdichip.com/Documents/InstallGuides.htm
http://www.ftdichip.com/
http://ftdichip.com/Documents/DataSheets.htm
http://ftdichip.com/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://ftdichip.com/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf

 Copyright © 2010 Future Technology Devices International Limited 5

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

2 Hardware Connections

There are four defined pins for each MPSSE channel coupled with a selection of GPIO pins. Table 2.1
below indicates the various pin assignments.

Signal Name

FT2232H

Channel A

FT2232H

Channel B

FT4232H

Channel A

FT4232H

Channel B

FT2232D

Channel A

TDI/DO 17 39 17 27 23

TDO/DI 18 40 18 28 22

TCK/SK 16 38 16 26 24

TMS/CS 19 41 19 29 21

GPIOL0 21 43 21 30 20

GPIOL1 22 44 22 32 19

GPIOL2 23 45 23 33 17

GPIOL3 24 46 24 34 16

GPIOH0 26 48 15

GPIOH1 27 52 13

GPIOH2 28 53 12

GPIOH3 29 54 11

GPIOH4 30 55

GPIOH5 32 57

GPIOH6 33 58

GPIOH7 34 59

Table 2.1 MPSSE Pin Assignments

 Copyright © 2010 Future Technology Devices International Limited 6

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

The MPSSE can be configured to handle nearly any synchronous interface. Table 2.2 below indicates the
signal assignments for the more popular interfaces of SPI, I2C and JTAG, as well as GPIO signals that
have a pre-defined function.

MPSSE Signal SPI Assignment I2C Assignment JTAG Assignment

Data Out (TDI/DO) MOSI SDA(1) TDI(2)

Data In (TDO/DI) MISO SDA(1) TDO(2)

Clock (TCK/CK) SCLK SCK TCK

Chip Select

(TMS/CS)
CS Unused TMS

GPIOL0 <available> <available> <available>

GPIOL1
WAIT(4) or

STOPCLK(3)(4)

WAIT(4) or

STOPCLK(3)(4)

WAIT(4) or

STOPCLK(3)(4)

GPIOL2 <available> <available> <available>

GPIOL3 <available> <available> RTCK(3)(4)

GPIOH0 <available> <available> <available>

GPIOH1 <available> <available> <available>

GPIOH2 <available> <available> <available>

GPIOH3 <available> <available> <available>

GPIOH4 <available> <available> <available>

GPIOH5 <available> <available> <available>

GPIOH6 <available> <available> <available>

GPIOH7 <available> <available> <available>

Table 2.2 Popular Synchronous Bus Signal Assignments

Notes:

1) The DI and DO pins need connected together in order to create the full SDA signal for I2C. The
DO pin requires configuration as an input except when transmitting in order to avoid driver
contention during a slave transmission.

2) The signal name assignments are with respect to the JTAG chain. TDI is the input to the first
device in the JTAG chain; the MPSSE DO signal will connect to TDI. TDO is the output from the
last device in the JTAG chain; the MPSSE DI signal will connect to TDO.

3) FT2232H and FT4232H Only.

4) These pins are available for GPIO if the MPSSE commands that use them are not used.

 Copyright © 2010 Future Technology Devices International Limited 7

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

2.1 Suggested Connections

Each type of interface has some unique circuitry needs. With such a diverse selection of peripheral
devices, not every interface can be covered here. The implementations below will serve as a starting

point for each of the popular interfaces.

For the FTDI USB Hi-Speed devices (FT2232H and FT4232H), the I/O interface operates at 3.3V. The
pins are 5V-tolerant, so it is possible to directly connect 5V devices to the interface. For the FTDI USB
Full-Speed device (FT2232D), the I/O interface operates at the voltage applied to VCCIO.

Care should be taken to review all datasheets for the devices to ensure I/O threshold and maximum
voltages are met.

2.1.1 SPI – Single Slave

DO

DI

CLK

CS/TMS

MOSI

MISO

SCLK

CS

MPSSE SPI

Figure 2.1 SPI - Single Slave Example Circuit

With a single SPI slave device, it is connected with a 1:1 relationship between signals. Some SPI devices
do not have both data in and data out signals. For example an analogue to digital converter may not
have a MOSI data input, and a digital to analogue converter may not have a MISO data output. The
signals on the FTx232D/H chips have internal pull-ups, so they may be left unconnected if they are not
used.

The chip select (CS) signal is used to enable the slave device’s interface. With only one device, it may be
acceptable to tie the chip select to an always-active state.

2.1.2 SPI – Multiple Slaves

DO

DI

CLK

CS/TMS

MOSI

MISO

SCLK

CS

MPSSE SPI-1

MOSI

MISO

SCLK

CS

SPI-2

MOSI

MISO

SCLK

CS

SPI-3

GPIOn

GPIOn

Figure 2.2 SPI - Multiple Slaves Example Circuit

Multiple SPI slaves share data in, data out and clock signals; however, they each require a unique chip
select (CS) signal. Any of the available GPIO signals, in addition to the MPSSE CS signal can be used as

additional chip selects. Only one slave device can be active at a time. The application program must
keep track of which SPI slave device is enabled.

As with the single-slave connection, unused DO and DI signals can be left unconnected.

 Copyright © 2010 Future Technology Devices International Limited 8

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

2.1.3 I2C – Single Slave

DO

DI

CLK

CS/TMS

SDA

SCK

MPSSE I
2
C

VCC

Figure 2.3 I2C Single Slave Example Circuit

I2C is a bidirectional, half-duplex communication scheme. Although the full specification allows for
multiple-masters, the MPSSE can only interface with I2C slave devices.

The I2C interface can be implemented with the connection shown in Figure 2.3. In addition, the
application software will need to include steps to change the direction of the MPSSE DO signal in order to

eliminate any bus contention.

Other connection schemes are possible, but are outside the scope of this application note.

2.1.4 I2C – Multiple Slaves

DO

DI

CLK

CS/TMS

SDA

SCK

MPSSE I
2
C

VCC

SDA

SCK

I
2
C

SDA

SCK

I
2
C

Figure 2.4 I2C Multiple Slaves Example Circuit

As an extension of the single-slave connection above, multiple I2C slave devices can be connected in
parallel. As before, only I2C slave devices can be used and the MPSSE DO signal will require changes in
direction to eliminate bus contention.

2.1.5 JTAG

TDI

TDO

TCK

TMS

JTAG-1

DO

DI

CLK

CS/TMS

MPSSE

TDI

TDO

TCK

TMS

JTAG-2

Figure 2.5 JTAG - Multiple TAP Example Circuit

JTAG implementations are well defined in the IEEE 1149.1 specification. DO is connected to the first
JTAG TAP TDI signal. The first JTAG TDO is connected to the second JTAG TDI. This continues for all
devices in the chain. The last TDO will be connected back to the MPSSE DI input. TCK and TMS are
connected in parallel for all JTAG TAP devices.

There are other connection schemes commonly used to break up large JTAG chains. Those are outside

the scope of this application note.

 Copyright © 2010 Future Technology Devices International Limited 9

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

3 Serial Protocol Configuration

All MPSSE commands as well as general communications with the FTDI MPSSE is accomplished over the
USB bus from the host computer to the FT-series part. Use of the D2XX API is required, and all MPSSE
commands are formulated through its read and write calls. See Section 1.1 Required Components for
links to the device driver and documentation.

Now that the hardware connections have been established, one must determine how to configure the
MPSSE to actually communicate with the target device(s). The following sections are a discussion of the
various parameters that need to be set.

3.1 MSB/LSB & Data Length

The MPSSE commands configure communications to send and receive data with either the least

significant bit or most significant bit first. Consult the datasheet of the target device to determine which
is needed. It is important to recognize that the choice of MPSSE command determines in which direction

the data will be transmitted.

The MPSSE commands operate on bytes, regardless of the orientation of the target device. For example,
if a 93C46D EEPROM configured for 16-bit operation, byte 0 is transmitted first from the MPSSE queue
and will be the most significant byte of the 16-bit word. Byte 1 is transmitted next, becoming the least
significant byte.

Both byte- and bit-based MPSSE commands exist to accommodate devices that may not operate on 8-bit
increments.

3.2 Clocks

As with data transmission direction, it is important to determine not only the speed that the target device
will communicate, but also on which edges the FTx232H/D device will transmit and receive data.

3.2.1 Divisors

The FT2232D is based around a 12MHz clock. A 16-bit divisor is used to program the data transmission
speed according the following formula:

Equation 3.1 FT2232D MPSSE Data Rate

The Divisor is a 16-bit hex value between 0x0000 and 0xFFFF, yielding possible data rates between 6MHz
and 92Hz.

The FT2232H and FT4232H are based around a 60MHz clock, 5x faster than the FT2232D. The FTx232H
data transmission formula is:

Equation 3.2 FTx232H MPSSE Data Rate

As with the FT2232D, the FT2232H Divisor is a 16-bit hex value between 0x0000 and 0xFFFF. With the
faster base clock, data rates range between 30MHz and ~460Hz.

The FTx232H devices also have a divide by 5 option. It is enabled by default to maintain compatibility
with FT2232D. With the divide by 5 option enabled, the FT2232D divisor formula is used.

 Copyright © 2010 Future Technology Devices International Limited 10

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

3.2.2 Edges

Data is typically clocked in and out on clock edges. Either the rising or falling edge can be used on
transmit or receive. This allows for six possibilities as outlined in Table 3.1.

Clock edge for transmit Clock edge for receive Idle Clock State

Rising Rising Not Valid

Rising Falling Low

Falling Rising High

Falling Falling Not Valid

Rising No data transfer Low

Falling No data transfer High

No data transfer Rising Low

No data transfer Falling High

Table 3.1 Data Transfer on Clock Edges

Note that both bidirectional and unidirectional data transfer is possible.

Based on these available options, refer to the datasheet of the target device to determine which edge is

required for each direction. In the 93C46D example noted above, the EEPROM clocks data in and out on
the rising edge. In this case, the MPSSE should be configured for data transfer on falling edges for both
transmit and receive. This allows the data out from both the MPSSE and the target device to stabilize
before being clocked in on the next edge.

3.2.3 Special Cases

3.2.3.1 Clocks without data transfer

MPSSE commands can be issued to generate the clock signal without any data transfer. Options are
available to halt the clock generation through the use of a GPIO signal, or to simply generate a given
number of clock cycles.

3.2.3.2 3-phase clocking (FT2232H & FT4232H only)

For I2C, data is available to the target on both the rising and falling edge of a clock signal. Data

transitions should only occur while the clock line is low.

3.2.3.3 JTAG Details

In addition to data in/out and clock, JTAG requires a fourth signal, TMS, to navigate through the IEEE
1149.1 state machine. Within the MPSSE, TMS is treated as a sort of secondary data output. The
command chain sent to the MPSSE consists of both data input/output and TMS output instructions.

All JTAG communications are LSB first. Data is shifted into the Test Access Port (TAP) on the rising edge,
so the MPSSE must clock data out on the prior falling edge. Data is shifted out of the TAP on the falling
edge, so the MPSSE must clock data in on the rising edge. The initial clock should idle high.

Adaptive Clocking is a means of synchronizing the generation of TCK for some target MCUs. RTCK
(return clock) is an input to the MPSSE that adjusts the TCK output to match the internal clock of the
JTAG TAP device, usually ARM-based microcontrollers.

See AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example for additional JTAG details.

http://ftdichip.com/Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example.pdf

 Copyright © 2010 Future Technology Devices International Limited 11

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

3.3 Miscellaneous Details

3.3.1 Initial Pin States

It is important to note that clock generation depends on the initial state of the SK output. Clock
generation is performed according to Table 3.2 below.

Initial State of SK/TCK Generated Clock Pulse

Low Low – High – Low

High High – Low – High

Table 3.2 Clock Pulse Generation

Prior to sending or receiving any data, the four dedicated MPSSE pins and any GPIO signals in use must

be configured for the correct direction and, if an output, the initial state. See “AN_108 Command
Processor for MPSSE and MCU Host Bus Emulation Modes”, Section 2.2 for additional data clocking
details.

A more detailed discussion of the programming steps required to configure and communicate through the
MPSSE is in Section 4.

3.3.2 Buffer Sizes

MPSSE data and commands are mixed in a single buffer as shown in Table 3.3 below. Multiple
commands can be sent to the MPSSE with a single call to FT_Write. The application’s buffers must be of

sufficient size to handle the largest combination of commands and data used in a single call.

Data Type Length (bytes)

Command 1

Data length 2

Data payload 1 to 65536

Total 4 to 65539

Table 3.3 Application Buffer Size Allocation

 Copyright © 2010 Future Technology Devices International Limited 12

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

4 Software Configuration

All communication with the MPSSE is accomplished through the FTDI D2XX API, which is defined in the
FTDI D2XX Programmer’s Guide. See Section 1.1 Required Components for links to the device driver and
documentation.

The following sections outline the required steps to configure and communicate through the MPSSE.

Confirm Device

Existence & Open

Handle

Configure FTDI

port for MPSSE

use

Configure MPSSE

Synchronous

Serial

Communications

and/or GPIO

Access

Reset MPSSE &

Close Port

Start

Stop
More Data or

GPIO?
N

Y

Figure 4.1 MPSSE Usage Flow Chart

4.1 Confirm device existence and open handle

Prior to utilizing the MPSSE, an application program needs to find out how many FT-series devices are
connected to the host system and to select the correct one. This is done with the following D2XX API

calls:

1) FT_CreateDeviceInfoList – This call returns the number of available FT-series devices that are
available on a particular system. It is important to note that each port of a multi-port chip is
included in this number.

2) FT_GetDeviceInfoList or FT_GetDeviceInfoListDetail – Depending on how it is used, this call
returns information about each of the available devices, such as the device name, which port it is
(e.g. “FT2232H A” or “FT2232H B”), the USB Location ID, the USB Serial Number, and most
importantly the USB Handle.

3) FT_Open or FT_OpenEx – Once the port information is determined, the application next opens the
port based on the handle obtained in step 2.

4.2 Configure FTDI Port For MPSSE Use

After opening the port, a few parameters need configured before the MPSSE can be enabled. This

consists of the following steps:

1) FT_ResetDevice – Reset the peripheral side of FTDI port.
2) FT_SetUSBParameters – Configure the maximum USB transfer sizes. This value can be set from

64 bytes to 64Kbytes and is dependent on the amount of data that needs to be transmitted or

received. Separate input and output transfer sizes can be set.
3) FT_SetChars –Configure the event and error characters. Most applications disable any event or

error characters.
4) FT_SetTimeouts – Configures the read and write timeouts in milliseconds. These timeouts are

disabled by default, so it is common to give the device driver a means of breaking out of an
errant transfer.

5) FT_SetLatencyTimer – This configures the amount of time to wait before sending an incomplete
USB packet from the peripheral back to the host. For applications that require quick responses
from the peripheral, set the latency timer to a lower value.

http://ftdichip.com/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf

 Copyright © 2010 Future Technology Devices International Limited 13

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

6) FT_SetFlowControl – Configure for RTS/CTS flow control to ensure that the driver will not issue IN
requests if the buffer is unable to accept data.

7) FT_SetBitMode – mode = 0, mask = 0 – Reset the MPSSE controller. Perform a general reset on
the MPSSE, not the port itself.

8) FT_SetBitMode – mode = 2, mask = 0 – Enable the MPSSE controller. Pin directions are set later
through the MPSSE commands.

4.3 Configure MPSSE

At this point, the MPSSE is ready to accept commands. MPSSE commands consist of an op-code followed
by one or more parameters. Op-codes are defined in “AN_108 Command Processor for MPSSE and MCU

Host Bus Emulation Modes”. FT_Write is used to send the command and parameters to the MPSSE.
Responses from the MPSSE are read by the application with FT_Read.

4.3.1 Synchronization & Bad Command Detection

If a bad command is detected, the MPSSE returns the value 0xFA, followed by the byte that caused the
bad command.

Use of the bad command detection is the recommended method of determining whether the MPSSE is in
sync with the application program. By sending a bad command on purpose and looking for 0xFA, the

application can determine whether communication with the MPSSE is possible.

4.3.2 MPSSE Setup

With communications established, the MPSSE must now be configured for the clock speed, pin directions
and initial pin states. The MPSSE in the FT2232H and FT4232H Hi-Speed USB parts have additional
parameters that need set: Divide clock by 5, 3-phase data clocking and JTAG adaptive clocking.
Although the default settings may be appropriate for a particular application, it is always a good practice
to explicitly send all of the op-codes to enable or disable each of these features.

4.4 Serial Communications

Once all of the parameters are configured, communication with the peripheral may occur.

The MPSSE can be placed in loop-back mode for diagnostic purposes. In addition to data being
transmitted out of the DO pin, it is also connected internally to the DI pin.

In both normal and loop-back modes, there are 32 choices of how data is transmitted received or both

transmitted and received. The choice of op-code depends on the following:

- Most significant bit first or least significant bit first. Note that each byte is transmitted in order.
If data is more than 8-bits wide, care must be taken to place the data into the buffer in the
correct order.

- Transmit data only, receive data only, or both transmit and receive data.
- Transmit on rising or falling edge; receive on rising or falling edge.

Commands in a buffer used with FT_Write would be followed by FT_GetStatus and FT_Read to read back

the response from the peripheral.

 Copyright © 2010 Future Technology Devices International Limited 14

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

4.5 GPIO Access

Each of the FTDI chips with the MPSSE has several pins that can be used for general purpose input and
output as outlined in Table 2.2. As with the serial communications, FT_Write is used to set the direction

and output values and to prompt the MPSSE to return the actual pin states. After issuing the MPSSE
“read GPIO” command, FT_Read is then used to retrieve the data containing the pin states.

4.6 Close handle

When the application has completed all communications with the peripheral, the handle to the FTDI
device must be closed. Although it is not explicitly necessary, it is also a good idea to reset the MPSSE

first, placing the port in an idle state before closing.

 Copyright © 2010 Future Technology Devices International Limited 15

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

5 Example Program

The example code listed below will follow Section 4 Software Configuration. While Section 4 covers the
FTDI MPSSE in general, this example focuses on a single set of parameters. This example program
utilizes the FTDI D2XX device driver. It is purposely written in a linear fashion to demonstrate the actual
bytes being sent to the MPSSE and the resultant data read from the MPSSE. A single call to FT_Write can
actually contain a number of MPSSE commands and arguments.

The first section establishes several of the variables that will be used throughout the program.

int _tmain(int argc, _TCHAR* argv[])

{

 // ---

 // Variables

 // ---

 FT_HANDLE ftHandle; // Handle of the FTDI device

 FT_STATUS ftStatus; // Result of each D2XX call

 DWORD dwNumDevs; // The number of devices

 unsigned int uiDevIndex = 0xF; // The device in the list that we'll use

 BYTE byOutputBuffer[8]; // Buffer to hold MPSSE commands and data

// to be sent to the FT2232H

 BYTE byInputBuffer[8]; // Buffer to hold data read from the FT2232H

 DWORD dwCount = 0; // General loop index

 DWORD dwNumBytesToSend = 0; // Index to the output buffer

 DWORD dwNumBytesSent = 0; // Count of actual bytes sent - used with FT_Write

 DWORD dwNumBytesToRead = 0; // Number of bytes available to read

// in the driver's input buffer

 DWORD dwNumBytesRead = 0; // Count of actual bytes read - used with FT_Read

 DWORD dwClockDivisor = 0x05DB; // Value of clock divisor, SCL Frequency =

// 60/((1+0x05DB)*2) (MHz) = 1Mhz

5.1 Confirm device existence and open handle

 // ---

 // Does an FTDI device exist?

 // ---

 printf("Checking for FTDI devices...\n");

 ftStatus = FT_CreateDeviceInfoList(&dwNumDevs);

 // Get the number of FTDI devices

 if (ftStatus != FT_OK) // Did the command execute OK?

 {

 printf("Error in getting the number of devices\n");

 return 1; // Exit with error

 }

 if (dwNumDevs < 1) // Exit if we don't see any

 {

 printf("There are no FTDI devices installed\n");

 return 1; // Exit with error

 }

 printf("%d FTDI devices found \

- the count includes individual ports on a single chip\n", dwNumDevs);

 // ---

 // Open the port - For this application note, we'll assume the first device is a

// FT2232H or FT4232H. Further checks can be made against the device

// descriptions, locations, serial numbers, etc. before opening the port.

 // ---

 printf("\nAssume first device has the MPSSE and open it...\n");

 Copyright © 2010 Future Technology Devices International Limited 16

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

 ftStatus = FT_Open(0, &ftHandle);

 if (ftStatus != FT_OK)

 {

 printf("Open Failed with error %d\n", ftStatus);

 return 1; // Exit with error

 }

5.2 Configure FTDI Port For MPSSE Use

 // Configure port parameters

 printf("\nConfiguring port for MPSSE use...\n");

 ftStatus |= FT_ResetDevice(ftHandle);

 //Reset USB device

 //Purge USB receive buffer first by reading out all old data from FT2232H receive buffer

 ftStatus |= FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in the FT2232H

// receive buffer

 if ((ftStatus == FT_OK) && (dwNumBytesToRead > 0))

 FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);

 //Read out the data from FT2232H receive buffer

 ftStatus |= FT_SetUSBParameters(ftHandle, 65536, 65535);

 //Set USB request transfer sizes to 64K

 ftStatus |= FT_SetChars(ftHandle, false, 0, false, 0);

 //Disable event and error characters

 ftStatus |= FT_SetTimeouts(ftHandle, 0, 5000);

 //Sets the read and write timeouts in milliseconds

 ftStatus |= FT_SetLatencyTimer(ftHandle, 1);

 //Set the latency timer to 1mS (default is 16mS)

 ftStatus |= FT_SetFlowControl(ftHandle, FT_FLOW_RTS_CTS, 0x00, 0x00);

 //Turn on flow control to synchronize IN requests

 ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x00);

 //Reset controller

 ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x02);

 //Enable MPSSE mode

 if (ftStatus != FT_OK)

 {

 printf("Error in initializing the MPSSE %d\n", ftStatus);

 FT_Close(ftHandle);

 return 1; // Exit with error

 }

 Sleep(50); // Wait for all the USB stuff to complete and work

The D2XX return value of ftStatus can be checked individually, or as an aggregate result of a number of
API calls as shown above. Throughout the rest of this example program, ftStatus is not always checked
in order maintain focus on each task being discussed.

5.3 Configure the FTDI MPSSE

At this point, the MPSSE is ready for commands. Each command consists of an op-code followed by any

necessary parameters or data. For clarity, each command is sent to the MPSSE with an individual
FT_Write call. In practice, it may be desirable to combine several commands into a single FT_Write call.

5.3.1 Synchronization & Bad Command Detection

 // Enable internal loop-back

 byOutputBuffer[dwNumBytesToSend++] = 0x84;

 // Enable loopback

 ftStatus = FT_Write(ftHandle, byOutputBuffer, \

dwNumBytesToSend, &dwNumBytesSent);

 // Send off the loopback command

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Check the receive buffer - it should be empty

 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 Copyright © 2010 Future Technology Devices International Limited 17

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

 // Get the number of bytes in

// the FT2232H receive buffer

 if (dwNumBytesToRead != 0)

 {

 printf("Error - MPSSE receive buffer should be empty\n", ftStatus);

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

// ---

 // Synchronize the MPSSE by sending a bogus opcode (0xAB),

 // The MPSSE will respond with "Bad Command" (0xFA) followed by

 // the bogus opcode itself.

 // ---

 byOutputBuffer[dwNumBytesToSend++] = 0xAB;

 //Add bogus command ‘0xAB’ to the queue

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the BAD command

 dwNumBytesToSend = 0; // Reset output buffer pointer

do

 {

 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in the device input buffer

 } while ((dwNumBytesToRead == 0) && (ftStatus == FT_OK));

 //or Timeout

 bool bCommandEchod = false;

 ftStatus = FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);

 //Read out the data from input buffer

 for (dwCount = 0; dwCount < dwNumBytesRead - 1; dwCount++)

 //Check if Bad command and echo command are received

 {

 if ((byInputBuffer[dwCount] == 0xFA) && (byInputBuffer[dwCount+1] == 0xAB))

 {

 bCommandEchod = true;

 break;

 }

 }

 if (bCommandEchod == false)

 {

 printf("Error in synchronizing the MPSSE\n");

 FT_Close(ftHandle);

 return 1; // Exit with error

 }

// Disable internal loop-back

 byOutputBuffer[dwNumBytesToSend++] = 0x85;

 // Disable loopback

 ftStatus = FT_Write(ftHandle, byOutputBuffer,\

dwNumBytesToSend, &dwNumBytesSent);

 // Send off the loopback command

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Check the receive buffer - it should be empty

 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in

// the FT2232H receive buffer

 if (dwNumBytesToRead != 0)

 {

 printf("Error - MPSSE receive buffer should be empty\n", ftStatus);

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

 Copyright © 2010 Future Technology Devices International Limited 18

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

5.3.2 MPSSE Setup

// ---

 // Configure the MPSSE settings for JTAG

 // Multple commands can be sent to the MPSSE with one FT_Write

 // ---

 dwNumBytesToSend = 0; // Start with a fresh index

 // Set up the Hi-Speed specific commands for the FTx232H

 byOutputBuffer[dwNumBytesToSend++] = 0x8A;

 // Use 60MHz master clock (disable divide by 5)

 byOutputBuffer[dwNumBytesToSend++] = 0x97;

 // Turn off adaptive clocking (may be needed for ARM)

 byOutputBuffer[dwNumBytesToSend++] = 0x8D;

 // Disable three-phase clocking

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the HS-specific commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Set TCK frequency

 // TCK = 60MHz /((1 + [(1 +0xValueH*256) OR 0xValueL])*2)

 byOutputBuffer[dwNumBytesToSend++] = '\x86';

 // Command to set clock divisor

 byOutputBuffer[dwNumBytesToSend++] = dwClockDivisor & 0xFF;

 // Set 0xValueL of clock divisor

 byOutputBuffer[dwNumBytesToSend++] = (dwClockDivisor >> 8) & 0xFF;

 // Set 0xValueH of clock divisor

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the clock divisor commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

// Set initial states of the MPSSE interface

// - low byte, both pin directions and output values

 // Pin name Signal Direction Config Initial State Config

 // ADBUS0 TCK/SK output 1 high 1

 // ADBUS1 TDI/DO output 1 low 0

 // ADBUS2 TDO/DI input 0 0

 // ADBUS3 TMS/CS output 1 high 1

 // ADBUS4 GPIOL0 output 1 low 0

 // ADBUS5 GPIOL1 output 1 low 0

 // ADBUS6 GPIOL2 output 1 high 1

 // ADBUS7 GPIOL3 output 1 high 1

 byOutputBuffer[dwNumBytesToSend++] = 0x80;

 // Configure data bits low-byte of MPSSE port

 byOutputBuffer[dwNumBytesToSend++] = 0xC9;

 // Initial state config above

 byOutputBuffer[dwNumBytesToSend++] = 0xFB;

 // Direction config above

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the low GPIO config commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

// Note that since the data in subsequent sections will be clocked on the rising edge, the

 // inital clock state of high is selected. Clocks will be generated as high-low-high.

 // For example, in this case, data changes on the rising edge to give it enough time

 // to have it available at the device, which will accept data *into* the target device

 // on the falling edge.

// Set initial states of the MPSSE interface

// - high byte, both pin directions and output values

 // Pin name Signal Direction Config Initial State Config

 // ACBUS0 GPIOH0 input 0 0

 // ACBUS1 GPIOH1 input 0 0

 // ACBUS2 GPIOH2 input 0 0

 // ACBUS3 GPIOH3 input 0 0

 // ACBUS4 GPIOH4 input 0 0

 // ACBUS5 GPIOH5 input 0 0

 // ACBUS6 GPIOH6 input 0 0

 // ACBUS7 GPIOH7 input 0 0

 byOutputBuffer[dwNumBytesToSend++] = 0x82;

 Copyright © 2010 Future Technology Devices International Limited 19

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

 // Configure data bits low-byte of MPSSE port

 byOutputBuffer[dwNumBytesToSend++] = 0x00;

 // Initial state config above

 byOutputBuffer[dwNumBytesToSend++] = 0x00;

 // Direction config above

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the high GPIO config commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 for(dwCount = 0; dwCount < 8; dwCount++)

 { // Clear out the input and output buffers

 byInputBuffer[dwCount] = 0x00;

 byOutputBuffer[dwCount] = 0x00;

 }

5.4 Serial Communications

 // Data Transmit, no receive

 byOutputBuffer[dwNumBytesToSend++] = 0x10;

 // Output on rising clock, no input

 // MSB first, clock a number of bytes out

 byOutputBuffer[dwNumBytesToSend++] = 0x01; // Length L

 byOutputBuffer[dwNumBytesToSend++] = 0x00; // Length H

 // Length = 0x0001 + 1

 byOutputBuffer[dwNumBytesToSend++] = 0xA5;

 byOutputBuffer[dwNumBytesToSend++] = 0x0F;

 // Data = 0xA50F

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the command

 dwNumBytesToSend = 0; // Reset output buffer pointer

 Sleep(2); // Wait for data to be transmitted and status

// to be returned by the device driver

// - see latency timer above

// Check the receive buffer - it should be empty

 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in

// the FT2232H receive buffer

 // It should be zero since there was

// no data clocked *in*

FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);

 if (dwNumBytesToRead != 0)

 {

 printf("Error - MPSSE receive buffer should be empty\n", ftStatus);

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

 Copyright © 2010 Future Technology Devices International Limited 20

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

Figure 5.1 Oscilloscope Result of Data OUT only

In Figure 5.1, the four main signals of the FTDI MPSSE match the expected value. A FT2232H module
was used with TDI/DO connected to TDO/DI and approproate connections to configure it for USB bus

power. The DATA and CLK signals shown above are duplicates of TDI/DO and TCK/SK, respectively.
These two are used as inputs to the SPI decode function within the oscilloscope.

By inspecting the TCK/SK and TDI/DO, one can observe that data is being clocked out on the rising edge

of the clock signal. This makes it available to the peripheral on the next falling edge of the clock.

printf("Press <Enter> to continue\n");

 getchar(); // wait for a carriage return

 // Now repeat the transmission with the send and receive op-code in place of transmit-only

 // Data Transmit, with receive

 byOutputBuffer[dwNumBytesToSend++] = 0x34;

 // Output on rising clock, input on falling clock

 // MSB first, clock a number of bytes out

 byOutputBuffer[dwNumBytesToSend++] = 0x01; // Length L

 byOutputBuffer[dwNumBytesToSend++] = 0x00; // Length H

 // Length = 0x0001 + 1

 byOutputBuffer[dwNumBytesToSend++] = 0xA5;

 byOutputBuffer[dwNumBytesToSend++] = 0x0F;

 // Data = 0xA50F

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the command

 dwNumBytesToSend = 0; // Reset output buffer pointer

 Sleep(2); // Wait for data to be transmitted and status

// to be returned by the device driver

// - see latency timer above

// Check the receive buffer - it should contain the looped-back data

ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in

// the FT2232H receive buffer

 Copyright © 2010 Future Technology Devices International Limited 21

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

 // It should be zero since there was

// no data clocked *in*

 FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);

 // The input buffer should contain the same number of bytes as those output

 if (dwNumBytesToRead != 2)

 {

 printf("Error - MPSSE receive buffer should have the looped-back data\n");

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

 printf("The correct number of bytes have been received\n");

 // Check to be sure it's the same.

 for(dwCount = 0; dwCount <= dwNumBytesRead - 1; dwCount++)

 {

 if (byInputBuffer[dwCount] != byOutputBuffer[dwCount + 3])

 // Output data begins at location 3,

// after the opcode and length

 {

 printf("Error - Data received does not match data output\n");

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

 }

printf("The input data matches the output data\n");

Figure 5.2 Oscilloscope Result of Data OUT and IN

 Copyright © 2010 Future Technology Devices International Limited 22

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

Figure 5.2 uses the same oscilloscope setup as in Figure 5.1. With TDI/DO connected to TDO/DI, data is
clocked into the MPSSE on the falling edge of clock. Again, one can confirm the data being transmitted,
and that it matches when read from the MPSSE receive buffer.

 printf("Press <Enter> to continue\n");

 getchar(); // wait for a carriage return

 // Clear the buffers

 for(dwCount = 0; dwCount < 8; dwCount++)

 {

 byInputBuffer[dwCount] = 0x00;

 byOutputBuffer[dwCount] = 0x00;

 }

5.5 GPIO Access

The non-dedicated pins of the FTDI MPSSE port can be used as GPIO. This includes any chip select (CS)

signals needed for SPI operation. Setting and clearing any of these pins is done in the same fashion. If
sent individually, as demonstrated below, the speed at which the GPIO signals can be changed is limited
to the USB bus sending each FT_Write call in a separate transaction. This is one of the cases where it is

desirable to chain multiple MPSSE commands into a single FT_Write call. The CS can be set, data
transferred and CS cleared with one call.

The code below performs a simple read-modify-write sequence to ensure the states of the other bits are
kept intact.

 // Read From GPIO low byte

 // ***

 //

 // Change scope trigger to channel 4 (TMS/CS) falling edge

 //

 // ***

byOutputBuffer[dwNumBytesToSend++] = 0x81;

 // Get data bits - returns state of pins,

// either input or output

 // on low byte of MPSSE

ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Read the low GPIO byte

 dwNumBytesToSend = 0; // Reset output buffer pointer

 Sleep(2); // Wait for data to be transmitted and status

// to be returned by the device driver

// - see latency timer above

 // Check the receive buffer - there should be one byte

 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);

 // Get the number of bytes in the

// FT2232H receive buffer

 ftStatus |= FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);

 if ((ftStatus != FT_OK) & (dwNumBytesToRead != 1))

 {

 printf("Error - GPIO cannot be read\n");

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset the port to disable MPSSE

 FT_Close(ftHandle); // Close the USB port

 return 1; // Exit with error

 }

 printf("The GPIO low-byte = 0x%X\n", byInputBuffer[0]);

 // The inpute buffer only contains one

 // valid byte at location 0

 printf("Press <Enter> to continue\n");

 getchar(); // wait for a carriage return

 // Modify the GPIO data (TMS/CS only) and write it back

 Copyright © 2010 Future Technology Devices International Limited 23

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

 byOutputBuffer[dwNumBytesToSend++] = 0x80;

 // Set data bits low-byte of MPSSE port

 byOutputBuffer[dwNumBytesToSend++] = byInputBuffer[0] & 0xF7;

 // Only change TMS/CS bit to zero

 byOutputBuffer[dwNumBytesToSend++] = 0xFB;

 // Direction config is still needed for each GPIO write

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 // Send off the low GPIO config commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 Sleep(2); // Wait for data to be transmitted and status

// to be returned by the device driver

// - see latency timer above

Figure 5.3 Oscilloscope Result of GPIO Output Change

Figure 5.3 shows the effect of reading the low GPIO byte, setting bit 3 (TMS/CS) to zero and writing that
value back to the GPIO port.

5.6 Close handle

Once all functions are completed, the FTDI MPSSE should be reset and disabled. This is followed by
closing the handle to the FT2232H port, freeing it for use by another application.

 // ---

 // Start closing everything down

 // ---

 printf("\nAN_135 example program executed successfully.\n");

 printf("Press <Enter> to continue\n");

 getchar(); // wait for a carriage return

 FT_SetBitMode(ftHandle, 0x0, 0x00);

 // Reset MPSSE

 FT_Close(ftHandle); // Close the port

 return 0; // Exit with success

}

 Copyright © 2010 Future Technology Devices International Limited 24

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

6 Summary

This application note demonstrates the basics of communicating with the FTDI devices with the Multi-
Protocol Synchronous Serial Engine (MPSSE). By getting a few fundamental practices configured, one
can utilize the flexibility of the MPSSE through implementing many synchronous serial protocols,
including SPI, I2C and JTAG. See Appendix A – References for additional application notes that
investigate the specifics of each of these protocols.

 Copyright © 2010 Future Technology Devices International Limited 25

Document Reference No.: FT_000208

AN_135 FTDI MPSSE Basics Version 1.1
Clearance No.: FTDI# 134

7 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited
(USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 408, 317 Xianxia Road,
Shanghai, 200051
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and

sales representative(s) in your country.

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the information contained in, or the

product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of

the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any

particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages

howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is

not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to

result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to

use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International
Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Number: SC136640

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/
http://ftdichip.com/

 Copyright © 2010 Future Technology Devices International Limited 26

Document Reference No.: FT_000208
AN_135 FTDI MPSSE Basics Version 1.1

Clearance No.: FTDI# 134

Appendix A – References

Document References

FT2232H Datasheet

FT4232H Datasheet

FT2232D Datasheet

FTDI D2XX Programmer’s Guide

AN_108 Command Processor For MPSSE and MCU Host Bus Emulation Modes

AN_113 Interfacing FT2232H Hi-Speed Devices To I2C Bus

AN_114 Interfacing FT2232H Hi-Speed Devices To SPI Bus

AN_129 Interfacing FT2232H Hi-Speed Devices to a JTAG TAP

TN_109 Instructions On Including The FTD2xx DLL In A VS2008 Project

Acronyms and Abbreviations

Terms Description

API Application Programming Interface

D2XX FTDI “Direct Driver” – USB device driver

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit – synchronous serial bus

IEEE Institute of Electrical and Electronics Engineers

IEEE 1149.1 Synchronous serial bus for integrated circuit and printed circuit test purposes

JTAG Joint Test Action Group

MPSSE Multi-Protocol Synchronous Serial Engine

SPI Serial Peripheral Interface – synchronous serial bus

TAP Test Access Point – a device within an IEEE 1149.1 bus

USB Universal Serial Bus

Table A.1 Acronyms and Abbreviations

http://ftdichip.com/Documents/DataSheets/DS_FT2232H_V206.pdf
http://ftdichip.com/Documents/DataSheets/DS_FT4232H_V207.pdf
http://ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
http://ftdichip.com/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://ftdichip.com/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://ftdichip.com/Documents/AppNotes/AN_113_FTDI_Hi_Speed_USB_To_I2C_Example.pdf
http://ftdichip.com/Projects/MPSSE/AN_114_FTDI_Hi_Speed_USB_To_SPI_Example.pdf
http://ftdichip.com/Documents/AppNotes/AN_129_FTDI_Hi_Speed_USB_To_JTAG_Example.pdf
http://ftdichip.com/Documents/TechnicalNotes/TN_109%20instrustions%20on%20Including%20the%20FTD2xx%20DLL%20in%20VS2008%20Project.pdf

 Copyright © 2010 Future Technology Devices International Limited 27

Document Reference No.: FT_000208
AN_135 FTDI MPSSE Basics Version 1.1

Clearance No.: FTDI# 134

Appendix B – List of Tables & Figures

List of Tables

Table 2.1 MPSSE Pin Assignments .. 5

Table 2.2 Popular Synchronous Bus Signal Assignments .. 6

Table 3.1 Data Transfer on Clock Edges .. 10

Table 3.2 Clock Pulse Generation ... 11

Table 3.3 Application Buffer Size Allocation ... 11

Table A.1 Acronyms and Abbreviations... 26

List of Figures

Figure 2.1 SPI - Single Slave Example Circuit ... 7

Figure 2.2 SPI - Multiple Slaves Example Circuit .. 7

Figure 2.3 I2C Single Slave Example Circuit .. 8

Figure 2.4 I2C Multiple Slaves Example Circuit ... 8

Figure 2.5 JTAG - Multiple TAP Example Circuit .. 8

Figure 4.1 MPSSE Usage Flow Chart ... 12

Figure 5.1 Oscilloscope Result of Data OUT only... 20

Figure 5.2 Oscilloscope Result of Data OUT and IN ... 21

Figure 5.3 Oscilloscope Result of GPIO Output Change .. 23

 Copyright © 2010 Future Technology Devices International Limited 28

Document Reference No.: FT_000208
AN_135 FTDI MPSSE Basics Version 1.1

Clearance No.: FTDI# 134

Appendix C – Revision History

Revision Changes Date

1.0 Initial Release 2010-02-12

1.1 Added instructions to enable RTS/CTS flow control – pp 13,16 2010-03-11

