

 (
Document Reference No.:
FT_000xxx
Application Note AN
xxx

FT12x Firmware
Programming Guide
Version draft
Clearance No.:

*
)[image: ftdilogojpg]
[image: ftdilogojpg]

Future Technology Devices International Ltd.
Application Note AN_xxx
FT12x Firmware Programming Guide

Document Reference No.: FT_000xxx
Version draft
Issue Date: 2012-07-30

This document provides guidelines to firmware developers for developing microcontroller applications with FT12x as a USB device peripheral.

Table of Contents
1	Introduction	2
2	Overview of the FT12x Architecture	3
3	Interfacing FT12x	4
3.1	Interfacing using parallel I/O lines	4
3.2	Interfacing using SPI	5
4	Chip Initialization and Configuration	6
5	FT12x Interrupt handling	7
6	USB Device Enumeration	9
7	Example Firmware	10
7.1	LPC1114 Microcontroller	10
7.2	LPCXpresso Target Board	11
7.3	FT12x Evaluation Kit	11
7.4	LPCXpresso IDE	12
7.5	Firmware directory structure	13
7.6	The Reference Firmware	14
7.7	Recommendations for porting to other MCUs	17
8	Reference	18
9	Contact Information	19
Appendix A – Revision History	21

[bookmark: _Toc292898333][bookmark: _Toc331781274]Introduction
FT12x family of integrated circuits are USB device controllers that can be introduced into a microcontroller based system to provide the system with USB connectivity. FT12x provides the system designer with the flexibility to design USB devices of various configurations, several numbers of interfaces and several endpoints of different types. USB devices conforming to standard USB classes and vendor specific types can be developed using FT12x chip, meaning that, USB peripheral devices of various types such as Mass Storage, Human Interface Device(keyboard/mouse/joystick), Printer, Communication Device Class(serial port), etc can be developed using FT12x.

[image:]
Figure 1: FT12x in a USB System
[bookmark: _Toc331781275]Overview of the FT12x Architecture

[bookmark: GET_NUM_FPGA_MORPH_DEVICE_SERIAL_NUMS][bookmark: AAAAAAAAAQ][bookmark: AAAAAAAAAP][bookmark: AAAAAAAAAS][bookmark: AAAAAAAAAR][bookmark: AAAAAAAAAM] (
EP1 Buffer
) (
USB PHY
) (
SIE
) (
Interface logic to application processor
) (
CONTROL LOGIC
) (
Buffer Selector & Index
) (
Buffer Selector & Index
) (
Data
Pointer
(8-bit)
) (
Command
Register
(8-bit)
) (
EP0 Buffer
) (
EPn Buffer
)

 (
A0
)

 (
DATA
)

Figure 2: FT12x Architecture

The above diagram provides a diagrammatic overview of the FT12x architecture that is visible to the programmer. The internal organization of the various components within the chip is different to that of what is shown in the above diagram.

As it can be seen, the application processor interacts with the FT12x using two 8-bit registers, one which is a command register and other is a data pointer. The data pointer incorporates an auto increment logic, which means that the pointer automatically points to the next byte in the memory once a data byte has been read.

Once the chip has been initialized and the endpoints have been configured, data from the host will be transferred into the respective OUT endpoint buffers and an interrupt will be generated if configured for. Similarly, when the application processor selects an IN endpoint and writes data to it, that data is transferred by FT12x to the host when it receives an IN token in that endpoint, and an interrupt is generated thereafter if configured for. Essentially the FT12x chip will format data from the application processor into USB frames and transmit it to the USB host. It will perform vice-versa when it receives a USB packet from the host.

[bookmark: _Toc331781276]Interfacing FT12x
The FT12x comes in two flavours, one that interfaces with the application processor over parallel I/O lines, and one that interfaces over a standard Serial Peripheral Interface (SPI).
As it can be seen from figure 2, the FT12x has two memory locations that are visible to the user. One is the command register; the other is the data pointer. A control line, A0, is present in FT120 and FT122 which can be used to select these memory locations.
For FT121, the A0 line is internal to the chip. Every SPI transfer begins with a command phase followed by optional data read or write phases, depending upon the command. The chip internally pulls the A0 line high during the first byte of the transfer and then pulls it low for the subsequent bytes of the transfer. A new command cycle begins every clock after the Slave Select line has been pulled low. Commands and data are grouped together as one SPI transfer if the SPI Slave Select line is held low throughout.

[bookmark: _Toc292898336][bookmark: _Toc298143866][bookmark: _Toc331781277]Interfacing using parallel I/O lines
The application processor can read or write to the FT12x over parallel I/O using 8 data lines, and two control lines, i.e. Read and Write. Some microcontroller chips will provide an external bus compatible with this interface whereas others won’t. When a compatible external peripheral I/O bus isn’t available, the GPIO lines may be used to toggle using firmware to emulate such an external peripheral bus. Typical code to perform read/write would take the following form:

void WriteBuffer(bool A0, uint8 *buffer, uint32 size)
{
	uint32 i;
	SetPortOut(); //Sets the 8 GPIO lines connected to the 8 data lines of FT12x to output mode
	if(A0) 	
		SetA0(); 		//sets A0 line high
	else
		ResetA0();	//sets A0 line low
	for(i=0;i<size;i++)
	{	
		SetDataLines(buffer[i]);	// put data on bus
		Delay(DELAY_WR_SETUP);	// write data setup time

//strobe WR_N
SetWriteLow();
		Delay(DELAY_WR); //PULSE WIDTH for WR_N low pulse should be 20nS (minimum)
		SetWriteHigh();
	}
}

void ReadBuffer(bool A0, uint8 *buffer, uint32 size)
{
	uint32 i;
	SetPortIn();	//Sets the 8 GPIO lines connected to the 8 data lines of FT12x to output mode
	if(A0)
		SetA0(); 		//sets A0 line high
	else
		ResetA0();	//sets A0 line low
	for(i=0;i<size;i++)
	{
		SetReadLow();		//assert RD_N
		Delay(DELAY_RD); 		//read data hold time
		Buffer[i]=ReadData();	//read the 8 bits from the bus
		SetReadHigh();		
	}
}

[bookmark: _Toc331781278]Interfacing using SPI
For FT121, the application processor can communicate using only one function that will first send a command and then optionally read or write data. While writing the function we have to make sure that the SPI Slave Select line isn’t toggled between the command and the data phases.

void SPICommand(uint8 command, bool direction,uint8 *data, uint32 size)
{
	uint32 i;
	SetSSLow();		//start the command cycle by pulling the Slave Select low
	SPI_Write(command,1);	//write 1 byte command
	If(size)
	{
	 if(direction == DIRECTION_WRITE)
	 SPI_Write(data,size);
	 else
	 SPI_Read(data,size);
	}
	SetSSHigh();		//signal the completion of the command cycle pulling the Slave Select high
}
		

The firmware can attempt to read the VendorID/ProductID/FTDID from the chip to ensure that the connections between the FT12x and the application processor have been established correctly, and the read/write functions are functioning. Please refer to the datasheet of the IC to obtain the command operational codes and the expected return values. Please note that these commands can work before any initialization commands have been issued to the chip.
It is recommended to use a mutex or a spinlock along with the functions that read/write to the FT12x to ensure that data are not garbled due to the same set of function getting called from another context.

[bookmark: _Toc331781279]Chip Initialization and Configuration

The chip will need to be initialized before it starts communicating over the USB bus. This is done using the SetMode command. This command is accompanied by two data bytes, the first provides various chip configuration parameters while the second sets the clock divisor for the output clock(CLKOUT) of the chip. After this, optionally for FT120 and FT122, if the application processor supports DMA data transfers then the DMA configuration can be set using the SetDMA command. Once these have been done, if the chip is FT121 or FR122 then the endpoint configuration should be set using the SetEndPointConfiguration command. The endpoint 0 and 1 are configured as control endpoint, with buffer size 16 and in enabled state by default, and will not need to be changed for any application.

Typical code for the initialization sequence would be like:

void FT12x_Init(void)
{
	FT12x_SetMode(FT12X_NOLAZYCLOCK, FT12X_SETTOONE | FT12X_CLOCK_12M);//disconnect USB
	Delay(DELAY_100MS);
FT12x_SetMode(FT12X_ENDP_NONISO|FT12X_SOFTCONNECT,
FT12X_SETTOONE|FT12X_CLOCKRUNNING|FT12X_CLOCK_12M);//connect USB
	#ifndef FT120	//this command applicable only for FT121 & FT122
		FT12x_SetEndpointConfig(ENDPOINT_2,1,1,3);
		FT12x_SetEndpointConfig(ENDPOINT_3,1,1,3);
	#endif
}

Other than the above, one also has to consider that typically the USB data will be handled by the application processor based on interrupts. The firmware has to configure the interrupt pin associated with the FT12x interrupt while the firmware configures the other interrupts and peripherals connected to the application processor.

[bookmark: _Toc331781280]FT12x Interrupt handling
Once the chip has been initialized and the SOFT_CONNECT bit has been set using the SetMode command, the USB host will start the enumeration sequence as shown below.

[image:]
Figure 3: USB Enumeration

The first USB packet that the device will receive will be a SETUP packet which will be a part of GetDeviceDescriptor. On receiving this packet the FT12x will generate an interrupt. When that happens, the application processor should read the interrupt register in FT12x, on doing that it will know that data has been received on endpoint 1. The handler for endpoint 1 should then issue the ReadLastTransactionStatus command to find out if the packet was SETUP packet and initialize the control endpoint handler state machine to service a control request.
The interrupt service routine for FT12x interrupt may take the following form:

void OnFT12xInterrupt()
{
 unsigned int interrupt_status;
 DisableFT12xInterrupt();//Disable the interrupt in the application processor that is connected to FT12x interrupt
 interrupt_status = FT12x_ReadInterruptRegister();//read which interrupt is it
 switch(interrupt_status & 0xFFFF)	//service the interrupt
 {
 case INTERRUPT_EP0:
 ep0_txdone();
 break;
 case INTERRUPT_EP1:
 ep0_rxdone();
 break;
 case INTERRUPT_EP2:
 ep1_txdone();
 break;
 case INTERRUPT_EP3:
 ep1_rxdone();
 break;
	...
	...
	...
 }
 EnableFT12xInterrupt();
}

void ep1_txdone(void)	//data written to the EP has been transferred to host; clear the interrupt
{
 unsigned char ep_last;
 ep_last = FT12x_ReadLastTransactionStatus(3); // Clear interrupt flag
}

void ep1_rxdone(void)	//data received from host, read it into buffer
{
 unsigned char len;
 unsigned char ep_last;
 ep_last = FT12x_ReadLastTransactionStatus(2); // Clear interrupt flag
 len = FT12x_ReadMainEndpoint(buffer+byteCounterRx); //Read data from FT12x to local memory
 RaiseFlagToProcessData(); //Raise some flag to process the received data in another thread or idle loop	
}			

Other than data transfer, the FT12x also raises interrupts when the host suspends the bus, performs a bus reset, or when the chip completes a DMA transfer. These conditions can be checked for by testing the specific bit in the returned value of the ReadInterruptRegister command, and then may be handled accordingly. For example, the USB device may be programmed go power saving mode after it sees a suspend interrupt, or it may wish to flush its buffers and reinitialize its buffer index after it sees a bus reset interrupt.
[bookmark: _Toc331781281]USB Device Enumeration
The first pair of endpoints(endpoint 0 and 1, or pipe 0) is a pair of control endpoints that receive standard, class specific and vendor specific requests and respond to them. The USB device enumeration requires only these to endpoint to complete the enumeration. Pipe 0 OUT is endpoint number 1. A control transfer consists of a SETUP transaction followed by one or more optional DATA (in or out) transaction(s), followed by a STATUS transaction as shown below

Figure 4: Control Transfer

An example of SETUP transaction can be seen in figure 3 where the standard USB request GetDeviceDescriptor is serviced. Typically, following is the sequence that a USB host will follow to enumerate a device:

1) On detecting a USB device plugged into the bus, the host will issue a reset
2) Issue standard GetDeviceDescriptor request.
3) After the device transfers the first 8 bytes of the device descriptor, the host issues another bus reset.
4) The host will now put the device into addressed state by sending the SetAddress request. The device firmware should take the address sent by the host and set its own address to this by using the FT12x SetAddressEnable command.
5) Then the host will ask for the entire device descriptor by issuing the GetDeviceDescriptor request once again.
6) After that the host will request for device configuration by issuing the GetConfigurationDescriptor request. Note that some hosts make this request in two stages, first it requests for only the first 9 bytes of the Configuration Descriptor and then it sends the request once again to get the entire descriptor. Also, depending upon the intended functionalities of the device, the configuration descriptor can have many sub descriptors like endpoint descriptors, interface descriptors, metadata/companion descriptors, etc.
7) Lastly the host will issue the GetStringDescriptor request to obtain the manufacturer, product and serial number strings.

[bookmark: _Toc331781282]Example Firmware

FTDI is providing an example firmware that runs on a LPC1114 microcontroller connected to FT12x which connects to the USB host as a composite device having a CDC-ACM serial port interface and a HID keyboard interface. When this device is connected to a host (a windows PC), a loopback serial port appears on the PC. Any data written to this serial port will be loopback back to the PC. An additional keyboard will also appear connected to the PC. This keyboard uses two keys (press-buttons) and two LEDs of the FT12x Evaluation board. The two keys and the LEDs correspond to CAPSLOCK and NUMLOCK of a normal keyboard.

Figure 5: USB interfaces of the example USB device firmware

	Pipe
	Endpoint
	Direction
	Type
	Interface

	0
	0
	OUT
	Control
	

	
	1
	IN
	Control
	

	1
	2
	
	
	CDC-ACM Control

	
	3
	IN
	Interrupt
	

	2
	4
	OUT
	Bulk
	CDC-ACM DATA

	
	5
	IN
	Bulk
	

	3
	6
	
	
	HID

	
	7
	IN
	Interrupt
	

Figure 6: Endpoint map

[bookmark: _Toc331781283]LPC1114 Microcontroller
The LPC1114 is a low cost 32bit ARM Cortex-M0 CPU based microcontroller from NXP Semiconductors. It has 8 kilobytes SRAM, 32 kilobytes flash and it can run at frequencies up to 50MHz. The microcontroller features a serial wire debug, system tick timer, nested vectored interrupt controller, 10-bit ADC, UART, SPI, I2C and WTD.

[bookmark: _Toc331781284]LPCXpresso Target Board

[image:]

Figure 7: LPCXpresso Target Board populated with LPC1114
Figure 7 shows a LPCXpresso Target Board populated with a LPC1114 microcontroller. The part of the board to the left of the red line is NXP’s debugging hardware for LPC microcontrollers. The board can actually be cut into two parts and the LPC1114 target in the left of the red line can work independently if no debugging is required.
[bookmark: _Toc331781285]FT12x Evaluation Kit
[image:]
Figure 8: FT12x Evaluation Kit (populated with LPC1114 and FT122 daughter board)

The FT12x Evaluation Kit comes in two flavours:

1. Populated with LPC1114 microcontroller: Binary image of the firmware can be downloaded to it through the UART port, or the left half of the LPCXpresso board(the debugger part) can be connected to CN1(8 pin JTAG header on the extreme right in figure 8) to debug the LPC1114 on the FT12x Evaluation Kit.
2. Not populated with LPC1114 microcontroller: The FT12x Evaluation Kit without the LPC1114 microcontroller is designed in such a way that the LPCXpresso Target Board can be fit into the FT12x Evaluation Kit so that the LPC1114 can communicate to the FT12x.

[bookmark: _Toc331781286]LPCXpresso IDE
The LPCXpresso IDE is a eclipse based integrated development environment for LPC microcontrollers that comes with everything that is required to develop and debug applications. This tool is available for free download from Code Red Technologies (requires registration).
After LPCXpresso has been installed and registered, while executing the program it will ask for the workspace path(shown in figure 9). Here browse to the folder of the provided example source root directory that contains the directory “.metadata” (see section 7.5 for source tree directory structure).

[image:]
Figure 9: LPCXpresso Select workspace path

Once this is done, the example firmware project will be loaded into the workspace and it can either be built so that the binary can be downloaded into the LPC1114, or it can be debugged by right-clicking on LPC1114-FT12x in the project explorer window and on the context menu selecting Debug As -> C/C++ MCU Application, as shown in figure 10.
The LPCXpresso features standard building and debugging features, the software’s help documentation provides details about it.
[image:]
Figure 10: Debugging using LPCXpresso

[bookmark: _Toc331781287]Firmware directory structure
· Project Root
· .metadata				LPCXpresso generated directory
· CMSISv2p00_LPC11xx		Standard CMSIS library for Cortex-M0
· LPC1114-FT12x
· .cproject
· .project
· .settings
· FT12x			Contains all USB specific code
· Include
· al.h		
· chap_9.h	
· ci.h		
· ftdi.h		
· mainloop.h
· usb.h
· src
· chap_9.c
· ci.c
· ftdi.c
· fw.c
· isr.c
· LPC1114			Contains all LPC1114 specific drivers
· cr_startup_lpc11.c
· gpio.c
· gpio.h
· main.c
· ssp.c
· ssp.h
· uart.c
· uart.h

The directory CMSISv2p00_LPC11xx contains standard CMSIS (Cortex Microcontroller Software Interface Standard) files provided by ARM.
The files and directories that begin with a “.” (dot) are generated by LPCXpresso IDE.

[bookmark: _Toc331781288]The Reference Firmware
The reference firmware provided is divided into two directories, the LPC1114 directory has the uart drivers(uart.h & uart.c), the SPI drivers(ssp.h & ssp.c), the GPIO drivers(gpio.h & gpio.c), startup functions(cr_startup_lpc11.c) and firmware start point(main.c). Please note that the drivers are example code provided with LPCXpresso and the startup code is provided by Code Red Technologies, and they come with their own liabilities, please check the comments sections in the respective file headers.
The FT12x directory contains all FTDI specific code where:
· chap_9.c contains all USB2.0 specification chapter 9 specific code.
· ci.c contains all the FT12x specific commands
· ftdi.c contains hardware specific helper functions
· fw.c contains the main(idle) loop and several important functions
· isr.c contains the USB interrupt service routine & subroutines

After starting a new LPC1114 project on LPCXpresso, the cr_startup_lpc11.c was modified at the following sections to customize it for the FT12x reference firmware:
· The interrupt vector table: to add function pointers to SPI, UART & GPIO interrupts handlers in the respective drivers.
· The SysTick_Handler interrupt handler: to update the ClockTicks.

The main() function in main.c is called from ResetISR after BSS and libraries have been initialized. The main() function setups the directions of the I/O lines and their initial values, setups the interrupts, initializes microcontroller peripherals and then calls FT12x_main(). The call graph for function FT12x_main() is shown in figure 11.
[image:]
Figure 11: Call graph of FT12x_main

FT12x_main initializes the FT12x and then goes into a continuous loop that services control, HID and CDC requests when they are sent from the host. The continuous loop may be divided into the following parts:

· Process control requests
· Standard USB requests
· Get Status
· Clear Feature
· Set feature
· Set Address
· Get Descriptor
· Get Configuration
· Set Configuration
· Get Interface
· Set Interface
· Class specific requests
· HID requests
· Set Idle
· Set Out Report
· CDC-ACM requests
· Get Line Coding
· Set Line Coding
· Set Control Line State
· Process HID requests
· Write Key Data to HID Interrupt-IN endpoint when key is pressed on board
· Process CDC-ACM requests
· If data had been received from host and are pending to be looped back then write a chunk of that data to the CDC-ACM Bulk-IN endpoint

[image:]
Figure 12: Call graph for USB ISR

GPIO pin1.11 is configured to call function fn_usb_isr() when FT12x raises a USB interrupt. The call graph for fn_usb_isr() is shown in figure 12. On entering the function the firmware issues command ReadInterruptRegister to FT12x to know what caused the interrupt. Then it will call the respective endpoint handler. If data was received from the host then the endpoint handler will copy the data from FT12x to its local buffer, perform any minimum processing required (lower half processing) and then signal the main loop to perform the bulk of the processing by raising a flag.
Following are the other contexts that run the firmware apart from the USB ISR and the main loop:
· SysTick handler: This interrupt handler only increments a software clock for internal reference.
· GPIO pin 1.0 interrupt handler: This pin is connected to SW2 on the Ft12x board. When this switch is pressed a CAPSLOCK toggle event is registered. This event is later detected in the main loop and the information is formatted into a report buffer and sent to the USB host via the HID interfaces interrupt endpoint.
· GPIO pin 1.1 interrupt handler: This pin is connected to SW3 on the Ft12x board. When this switch is pressed a NUMLOCK toggle event is registered. This event is later detected in the main loop and the information is formatted into a report buffer and sent to the USB host via the HID interfaces interrupt endpoint.
· GPIO pin 3.2 interrupt handler: This pin is connected to push button SW1 on the FT12x Evaluation board. When the button is pushed the corresponding ISR calls the BSP’s system reset function.
The LEDs D2 and D3 on the FT12x Evaluation board correspond to key status of CAPSLOCK and NUMLOCK respectively. They are toggled when the host sends class specific request Set Output Report to the control endpoint.

[bookmark: _Toc331781289]Recommendations for porting to other MCUs
Given below are some recommendations that may be useful while porting this firmware to another microcontroller:
· If using Parallel I/O, modify functions FT12x_WriteBuffer and FT12x_ReadBuffer in file ftdi.c to suite the connection and timings.
· If using SPI, replace SSP_Send() in ci.c with the appropriate SPI data transferring function.
· From the main function call FT12x_main after the microcontroller specific & peripheral initializations are done.
· Call function fn_usb_isr() in isr.c from the ISR associated with the interrupt pin of FT12x.
· Set variable KbdDataAvailable=0x39 and KbdDataAvailable=0x53 respectively in the ISRs associated with the CAPSLOCK and NUMLOCK keys.
· Modify function Set_LED() in ftdi.c to turn ON/OFF CAPSLOCK and NUMLOCK status LEDs.
· Modify the macros ENABLE and DISABLE in ftdi.h to enable and disable interrupts for that MCU.
· Configure a timer interrupt to increment variable ClockTicks approximately every 10mS.

[bookmark: _Toc331781290]Reference

1. Datasheets of FT120, FT121, FT122
2. USB 2.0 Specification
3. USB CDC-ACM Class Specification
4. USB HID Class Specification
5. ARM Cortex M0 Technical Reference Manual
6. LPC1114 Datasheet
7. LPC1114 User Manual
8. Cortex Microcontroller Software Interface Standard(CMSIS) Specification
9. LPCXpresso User Guide – Getting Started with NXP LPCXpresso

[bookmark: _Toc285542221][bookmark: _Toc285542224][bookmark: _Toc285542227][bookmark: _Toc285542234][bookmark: _Toc285542235][bookmark: _Toc285542236][bookmark: _Toc285542237][bookmark: _Toc285542238][bookmark: _Toc285542239][bookmark: _Toc285542240][bookmark: _Toc285542241][bookmark: _Toc285542242][bookmark: _Toc285542243][bookmark: _Toc285542244][bookmark: _Toc285542245][bookmark: _Toc285542246][bookmark: _Toc285542247][bookmark: _Toc285542248][bookmark: _Toc285542250][bookmark: _Toc285542251][bookmark: _Toc285542253][bookmark: _Toc285542254][bookmark: _Toc285542255][bookmark: _Toc285542256][bookmark: _Toc285542258][bookmark: _Toc285542259][bookmark: _Toc285542260][bookmark: _Toc285542262][bookmark: _Toc285542263][bookmark: _Toc285542264][bookmark: _Toc285542265][bookmark: _Toc285542267][bookmark: _Toc285542268][bookmark: _Toc285542270][bookmark: _Toc285542271][bookmark: _Toc285542273][bookmark: _Toc285542274][bookmark: _Toc285542276][bookmark: _Toc285542277][bookmark: _Toc285542278][bookmark: _Toc285542279][bookmark: _Toc285542281][bookmark: _Toc285542282][bookmark: _Toc285542283][bookmark: _Toc285542285][bookmark: _Toc285542286][bookmark: _Toc285542287][bookmark: _Toc285542288][bookmark: _Toc285542290][bookmark: _Toc285542291][bookmark: _Toc285542292][bookmark: _Toc285542293][bookmark: _Toc285542296][bookmark: _Toc285542297][bookmark: _Toc285542298][bookmark: _Toc285542299][bookmark: _Toc285542300][bookmark: _Toc285542301][bookmark: _Toc285542302][bookmark: _Toc285542303][bookmark: _Toc285542304][bookmark: _Toc285542305][bookmark: _Toc285542306][bookmark: _Toc285542307][bookmark: _Toc285542308][bookmark: _Toc285542309][bookmark: _Toc285542310][bookmark: _Toc285542311][bookmark: _Toc285542312][bookmark: _Toc285542313][bookmark: _Toc285542314][bookmark: _Toc285542315][bookmark: _Toc285542316][bookmark: _Toc285542317][bookmark: _Toc285542318][bookmark: _Toc285542319][bookmark: _Toc285542320][bookmark: _Toc285542324][bookmark: _Toc285542325][bookmark: _Toc285542326][bookmark: _Toc285542327][bookmark: _Toc285542328][bookmark: _Toc285542329][bookmark: _Toc285542332][bookmark: _Toc285542333][bookmark: _Toc285542334][bookmark: _Toc285542335][bookmark: _Toc285542336][bookmark: _Toc285542339][bookmark: _Toc285542340][bookmark: _Toc285542341][bookmark: _Toc285542342][bookmark: _Toc285542344][bookmark: _Toc285542345][bookmark: _Toc285542346][bookmark: _Toc285542349][bookmark: _Toc285542358][bookmark: _Toc196715719][bookmark: _Toc331781291]Contact Information
Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1,2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales)			sales1@ftdichip.com
E-mail (Support) 		support1@ftdichip.com
E-mail (General Enquiries) 	admin1@ftdichip.com
Web Site URL			http://www.ftdichip.com
Web Shop URL			http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales)	 		tw.sales1@ftdichip.com
E-mail (Support) 		tw.support1@ftdichip.com
E-mail (General Enquiries) 	tw.admin1@ftdichip.com
Web Site URL 		 	http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

	E-Mail (Sales)
	us.sales@ftdichip.com

	E-Mail (Support)
	us.support@ftdichip.com

	E-Mail (General Enquiries)
	us.admin@ftdichip.com

	Web Site URL
	http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
Shanghai, 200051
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales)	 		cn.sales@ftdichip.com
E-mail (Support) 		cn.support@ftdichip.com
E-mail (General Enquiries) 	cn.admin@ftdichip.com
Web Site URL 	 		http://www.ftdichip.com

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd. will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd., Unit 1, 2 Seaward Place, Centurion Business Park,Glasgow, G41 1HHUnited Kingdom. Scotland Registered Number:

[bookmark: _Toc331781292]Appendix A – Revision History
	Revision
	Date
	Details

	Draft
	2012-08-03
	First Draft

	
	
	

	
	
	

	
	
	

	
	
	

Revision Record Sheet
	Authors
	Satyajit Sarma

	Filename
	FT12x Firmware Programming Guide

	Revision
	Date
	Details

	Draft
	2012-08-03
	First Draft

	
	
	

	
	
	

	
	
	

Sign Off
	Signatory
	Signature
	Date

	Managing Director
	
	

	Engineering Manager (Global)
	
	

	Hardware Engineer
	
	

	Software/Firmware Engineer
	
	

	Sales & Marketing Manager
	
	

Clearance Approval

- This Document is cleared for FTDI use.

- This document may not be distributed outside of FTDI.

Clearance Number
(Where applicable for external communications)

Revision History
Revision history (internal use only, please clearly state any changes here before saving the file.)
	Revision
	Date
YYYY-MM-DD
	Changes
	Editor

	Draft
	2012-08-03
	First Draft for review
	Satyajit Sarma

	
	
	
	

SETUP Transaction

SETUP packet

DATA packet

DATA Transaction
(optional)

IN/OUT packet

DATA packet

STATUS Transaction

OUT packet

DATA packet
(Zero length)

ACK packet
ACK packet
ACK packet

Interface 1:
CDC-ACM class

USB-IF CDC-ACM class device(serial port)

Data loopback

Interface 2:
HID class

USB-IF HID class device(keyboard)

Only two buttons and LEDs corrosponding to CAPSLOCK and NUMLOCK

Future Technology Devices International Ltd.
Unit 1, 2 Seaward Place, CenturionBusinessPark,Glasgow, G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): admin1@ftdichip.com Web: http://ftdichip.com
Copyright © 2011Future Technology Devices International Ltd.

	Copyright ©2011Future Technology Devices International Ltd.1
image1.jpeg
i FTDl

image2.png
USB Device USB Host

Microcontroller

image3.png
e
Fs$
Fs $
Fs $
Fs ¢
Fs $
Fs $
Fs $
Fs $
Fs $
Fs $
Fs $
Fs ¢
Fs $
Fs $
Fs $
Fs $
Fs $
Fs $
Fs $
Fs ¢
Fs $
Fs $
Fs $
Fs $
s $

Index

13
14
15
16
7
18
19
20
21
2
2
24
2
2
2
28
29
20
3
E
a2
61

105

124

138

1:08.308.207
1:08.330.266
1:08.371.533
1:08.371.533
1:08.371.533
1:08.371.536
1:08.371.545
108372534
108372534
1:08.378534
1:08.378.538
1:08.378.552
1:08.380.535
1:08.380.535
1:08.380538
1:08.380.541
1:08.381.602
1:08.381.608
1:08.401.668
1:08.433542
1:08.484.546
1:08.480.549
1:08.523.555
1:08.535.556
1:08.541.557

Len
309ms

168
8B
3B
1B
18
168
5.00ms
3B
198
18
0B
3B
£
18
525us
200ms

08
188
1008
188
4B
688

Er

Dev Ep
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
01 00
01 00
01 00
01 00
01 00

Record
B Reset> /<Chirp J> 1 <Tiny J>
B Fulspeed

4 GetDevice Descriptor
4 O SETUPbA

© SETUP packet

48 DATAO packet

¥ ACK packet
4 @ N (5POLL]

S [6IN-NAK]

© INpacket

38 DATAT packet

¥ ACK packet
4@ outtn

© ouT packet

48 DATAT packet

¥ ACK packet
B <Reset> /<Target disconnecle
B <Reset> /<Chirp J> <Tiny J>
M <Full-speed=

> O SetAddress

> © Get Deice Descriptor

> (9 Get Configuration Descriptor

> Getsting Descriptor

> Getsting Descriptor

> 9 GetString Descriptor

Summary

Index=0 Length=64.

20
F)

05
]
0

o

]
12

[
[

00 01 00 00 40
10
06 00 01 00 00

10 01 EF 02 01

10

01 10 01 EF 02

10
0

[

10 0

10 02

o1 1c

image4.png
Rt
alpr |l| ‘e Des1gned by

Q2000 S %! Embecded Art
a’\ als ;\pr / Code Red

image5.png
wewrw Ndschiap com

9.00l000600GC000000000000000 00!
©000C0000000000000000000
$08600000000000000000000000
BB 00C0000000O00O000000000
0|6l 0000000000000 0000000
0000000000000 0000000
©000000000000000000
0000000000000000000
)

)

)
(o))
AA

b00
00000

()
(] (=)

(] ©

(] 0000000000000 000000
(=] 000LO00000000C00000
C000000O000CO000000000
000000000000 00000000
(=)

000000000000 0000000

0000000000
000000000006
000000000000
00000000000
9000000000
9000000000
@000000000
@0000000

o
o
o
o
o
o
o
°
i~}

pee0o0

998000000000

© O
(oXo)
0 ©
© ©
© O
© ©
© O
(=X=)

image6.png
- Workspace Launcher
Select a workspace

LPCXpresso stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

7] sethis ss the default and do not ak again

image7.png
File Edit Source Refactor Navigate Search Project Run Window Help

CICRETE E =R N
a-le i @p-idie-a-

m@’ﬁ?mw%zhﬁmw =8

[8) main.c 22

&5 CMSIS2p00_LPClixc

e@~

6 int main(void)
=X

Delete

Rename...

Import.
Epor..

Build Project

Clean Project

Refresh

Close Project

Close Unreated Projects
Build Configurations
Make Targets

Indec

4 // setup interrupt to call fn_usb_isr

SetupIOLines () ;

pifder INFRA_DESUG_ENASLE
UARTInit (UART_BAUD_RATE) ;
penair

"\r\am) 7

DBG (MSG_DESUG,

b o0 [l pro | O Me | 8 Red | 47 sear| S Pro |

hsoles to display at this time.

»
o Debughs » [@ 1¢/Co+ MCU Application
T profileas » | [E] 2Local C/C++ Application
Team » 5
. Compare With Y L e

image8.png
FT12x_main

set_address

get_interface

get_configuration

FT12x Delay

FT12x WhiteEndpoint

FT12x_ReadEndpoint

FT12x_Getld

FT12x ReadEndpointStatus

control handler

B ot status

>

single transmit

FT12x_ReadMainEndpoint

FT12x_ReadChiplD

set_feature

code_transmit

set_interface

et descriptor

FT12x_SelectEndpoint

inporth

FT12x_ReadBuffer

»{ FT12¢_SetPortin

FT12x_WiiteBuffer

[FT12_setParout

GPINSAValin

FT12x_ReadLastTransactionStatus

autporth

stall epd FT12x SetAddressEnable
[r— ep_rxdone FT12x_SetEndpointStatus

clear_feature FT12x_AcknowledgeEndpoint
set_configuration FT12x SetEndpointEnable
init_ unconig FT12x_SetEndpointConfig

init_config

reconnect USB

disconnect_USB

connect USE

FT12x_SetMode

FT12x SetDMA

image9.png
bus_reset

ep_rxdone

FT12x_SetEndpointStatus

epl_rxdone

FT12x_ReadEndpoint

ep_txdone

FT12x_AcknowledgeEndpoint

autporth

f_ush_isr

| ep2_txdone

T

FT12x_ReadLastTransactionStatu

GPIOSetValue

ep3_rxdone

FT12x_ReadMainEndpoint

inporth

>

FT12x_ReadBuffer

] FTi2x_setPortin

ep3_txdone

FT12x_ReadinteruptRegister

ep2_rxdone

FT12x_WiiteEndpoint

ep_txdone

FT12x_WhriteBuffer

! FT12x_Delay

FT12x_SetPortOut

