
Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits

or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com
Copyright © Future Technology Devices International Limited

Application Note

AN_475

FTDI Windows 10 IoT Solutions

Version 1.0

Issue Date: 2016-05-23

This document describes the FTDI Windows 10 IoT demonstration, which uses
FTDI USB bridging and EVE display controller devices to provide the entire
I/O and graphical user interface solutions for an IoT sensor application.

The Application is targeted at the Raspberry Pi 2 ARM platform. However, due
to the flexibility afforded by using the FTDI USB bridging device as the
hardware interface, the application can also be used on a wide variety of
other platforms.

http://ftdichip.com/

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 1
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Table of Contents

1 Introduction .. 2

1.1 Overview ... 3

1.2 Scope ... 3

2 Hardware .. 4

3 Example Program .. 8

3.1 FTApp .. 10

3.2 Task Loop .. 11

3.2.1 The graphics primitives: .. 11

3.3 Display Screen ... 14

3.4 I2C Sensor Functions .. 17

3.4.1 Sensor Application Layer ... 17

3.4.2 I2C API Layer .. 19

3.4.3 D2xx interface layer .. 20

4 Summary ... 21

5 Contact Information .. 22

Appendix A – References .. 23

Document References ... 23

Acronyms and Abbreviations .. 23

Appendix B – List of Tables & Figures ... 24

List of Figures .. 24

Appendix C – Revision History .. 25

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 2
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

1 Introduction

This document describes FTDI’s Internet Of Things (IoT) demo, where an FTDI bridging device and

FTDI display controller are used in a sensor and display application.

Small embedded computers such as the Raspberry Pi have become increasingly popular in IoT

applications, and the introduction of Windows 10 for the Raspberry Pi has further enhanced this.

FTDI’s bridging and display solutions allow designers to both provide/extend the I/O capabilities,

often a key requirement for IoT devices, and also provide a customized graphical user interface

which can be integrated into the product. In the latter case, platforms such as the Raspberry Pi

which were originally designed for full size keyboards, mice and HDMI monitors are now being

used in compact applications which need an integrated human interface where local control of the

device is required.

The FT4232H bridging device provides a versatile means of I/O extension, taking care of the entire

interfacing requirement in this demonstration including the display, whilst utilizing only a single

USB port. The only connections to the Raspberry Pi are the power and the USB connection to the

FT4232H bridge. The demo combines the bridging device with an EVE display/touch controller to

form a complete and capable I/O and user interface solution from FTDI including the following

features:

 I2C/SPI interfacing to sensors and peripherals

 GPIO lines

 Two additional UART/GPIO ports

 A colour graphics TFT user interface with touch/audio capabilities

The target hardware platform for this project is a Raspberry Pi 2 (32-bit ARM) running the latest

version of Windows 10 IoT core. It has the D2XX Universal Windows Driver installed, which is

FTDI’s new driver for UWP based Windows 10 systems. The Application is developed in Microsoft’s

Visual Studio IDE and is compatible with the Free Community version of the tool (see Appendix A –

References).

The Windows 10 Universal Windows Platform (UWP) was selected for this demo due to its

increasing popularity for IoT applications, and because the same source can be built to run across

the different Windows 10 platforms. However, the application could also be ported to run on Linux

on the Raspberry Pi via the FTDI D2xx driver for Linux, in addition to other OS and platforms

which support FTDI’s D2xx drivers.

Please refer to the sample code project at:

http://www.ftdichip.com/Support/FTReferenceDesigns.html

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
http://www.ftdichip.com/Support/FTReferenceDesigns.html

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 3
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

1.1 Overview

The basic function of the application is to measure the colour of objects placed in the proximity of

the colour sensor. The application detects the presence of an object via the proximity sensor, and

reflects this on the screen by increasing the radius of the red indicator circle (shown with no object

in proximity in Figure 1). When the proximity reaches a level defined in the software, a GPIO line

is used to turn on the white LED to illuminate the object. The colour sensor measures the colour of

the object as a set of RGB values and uses these to calculate a hue value. The hue value is

displayed in addition to colouring the indicator circle to match the object measured.

An FTDI FT800, on the VM800B module, is used to provide a local display to the Raspberry Pi. The

FT800 has a rich feature set and its object oriented design makes it easy to create attractive and

intuitive user interfaces. The FT800 also has touch screen and audio features which are readily

supported by the VM800B as supplied. These could be used to extend the demo to provide a full

display and control solution for embedded processor systems, allowing the application to be run as

a self-contained system without any monitor, keyboard, or mouse connected to the Raspberry Pi.

l

Figure 1 FTDI IoT Demo Hardware

1.2 Scope

This document is intended to help designers of IoT applications to use the FTDI bridging devices to

extend the I/O capabilities of their embedded processor board and to use FTDI’s EVE display

solutions to provide a graphical user interface (which could be extended with touch and audio

capabilities). The document uses the Raspberry Pi 2 and Windows 10 as the example platform.

The topics covered by this application note include:

 Using the FTDI Universal Windows Platform D2xx driver on Windows 10

 Using FTDI bridging devices and associated MPSSE functions for SPI and I2C

 Using the FTDI EVE devices to create a user interface for small embedded computers

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 4
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

2 Hardware

The hardware and source code described in this application note provide a starting point for

developing applications to enable USB to SPI and USB to I2C communications using the FTDI

bridging solutions such as the FT4232H. FTDI have several other bridging devices including the

FT232H, FT2232H and FTDI C232HM MPSSE cable which could also be used.

The block diagram is shown below and the demo schematic is shown in Figure 2.3.

Figure 2.1 Overview of system Elements

RPi 2

FTDI FT4232H Hub

Module

USB

SPI / GPIO

FT800 (EVE)

Colour Sensor

Proximity
Sensor

I2C / GPIO

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 5
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

FT4232H Hub Module

The FTDI FT4232H Hub Module provides the key I/O interface to the Raspberry Pi. It contains a 4-

port USB hub with one port of the hub hosting an FT4232H device and the other ports available to

connect to other USB devices. Two channels of the FT4232H are used to provide an I2C and an SPI

interface along with some GPIO lines.

With the configuration used in this demo, the module provides the following interfaces whilst

utilizing only one USB port on the Raspberry Pi:

 An SPI Master interface with GPIO on port ADbus via MPSSE (used for the EVE controlled

display)

 An I2C Master interface with GPIO on port BDbus via MPSSE (used for the sensors)

 Two spare UART/Bit-bang ports CDbus and DDbus

 Two spare USB downstream ports on Type-A connectors

 One spare USB downstream port on the pin header

The SPI Master and I2C Master are provided by the Multi-Protocol Synchronous Serial Engine

(MPSSE) interfaces available on ports A and B of the FT4232H. The MPSSE is a versatile data

clocking engine which allows a variety of protocols such as I2C Master, SPI Master and JTAG to be

implemented. The sample code provided with this application note includes example functions for

implementing the SPI protocol for the FT800 and I2C protocol for the sensors.

The USB cable between the sensors/display and the computer board also means that they may be

located in separate hardware units or that additional I/O can be easily added. For example, in a

measurement system, the Raspberry Pi may be located inside the main enclosure of the machine.

An FT232H-based module may connect to one USB port of the RPi to provide the interface to an

EVE-based display which is on a flexible arm allowing the user to position it conveniently. A second

FT232H or FT2232H may be used to connect to the sensors within the main body of the machine

with an internal USB connection to a second port on the Raspberry Pi.

Figure 2.2 Measurement system

FT800

Sensors

Display unit

USB

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 6
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

VM800B EVE Module

The FTDI VM800B EVE module is controlled via the SPI Master interface. The EVE IC family from

FTDI make it easy to create a user interface with a colour LCD panel, touch screen and audio

output. The VM800B module allows evaluation of the EVE device features with only a simple

connection to a power source and an SPI Master. The module has all of the features needed to

control the display, touch and audio over the SPI interface, including backlight driver and

amplifier/speaker. The plastic bezel provides an easy and secure way of mounting the display. This

demo provides a simple graphical interface but could be extended to include more comprehensive

graphics including bitmaps, touch control and audio. More information on the range of EVE

devices, evaluation boards and sample code can be found at http://www.ftdichip.com/EVE.htm

Sensors

The I2C interface has two sensors connected; an Adafruit colour sensor and a MikroE IR proximity

sensor. Information on these sensors can be found in Appendix A – References.

The sample code provided has functions for initializing and reading the sensors which can easily be

modified to communicate with other I2C sensors. As MPSSE has separate Data In and Data Out

pins, these are linked to form a single SDA data line. The MPSSE command sequences sent by the

library function also handle the direction for the Data Out pin so that the SDA line becomes tristate

when the slave will be driving the line. This allows the code to be used with the FT2232H and

FT4232H which do not have the open-drain mode but have multiple channels which make them

well-suited to this application.

The I2C functions also provide GPIO functionality on the unused pins of the port (bits 3-7). One of

these is used to control the white LED used on the RGB colour sensor which illuminates the object

being measured. The other lines are available for future extension of the demo.

Power Supply

The demo is powered from a single 5V input. A 3v3 LDO regulator provides a 3v3 rail for the

sensors. The Proximity sensor runs from a 3v3 supply whilst the colour sensor runs from a 5V

supply to provide additional voltage for its white LED but includes an I2C level shifter allowing 3v3

operation on the I2C bus. Alternative sensors with an I2C or SPI interface could be connected to

the FT4232H to suit a variety of measurement applications.

Note that the Raspberry Pi was powered via its GPIO header in the demo but this method of

powering bypasses the reverse polarity and overvoltage protection. The Raspberry Pi 2 could

instead be powered via its USB micro B connector.

A photo of the complete demo unit is shown in Figure 1 on page 3.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
http://www.ftdichip.com/EVE.htm

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 7
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Figure 2.3 Schematic

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 8
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3 Example Program

The Application is written as a Universal Windows Platform (UWP) architecture using C# and the

.Net framework. It is developed in Microsoft’s Visual Studio IDE and is compatible with the Free

Community version of the tool (see Appendix A – References).

The Application is partitioned into a number of classes. The application is multithreaded and uses

the Microsoft Task Parallel Library (TPL). While for development purposes there is a user interface

present in the example code, the application is ultimately targeted to be run as a startup

application on a headless device.

The Application includes a reference to the FTDI FTD2xx.dll which is included in the example

project provided or which may be obtained from the FTDI website. Within the sample project the

dll is located in a sub directory of the project called .\Library and referred to in the References

section as shown in the excerpt from the solution explorer shown below.

Figure 3.1 Solution Explorer

The FTD2XX DLL is the entry point for accessing the device drivers for the USB to I2C/SPI devices.

The API and programming guide for this can be found on the FTDI website:

FTDI D2xx Programmers Guide

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 9
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

An overview of the structure of the application is shown as a UML class diagram in the following

figure. From this diagram it can be seen that the application is broadly partitioned into 5 classes.

The FTApp class contains the main User application code. The classes CoPro, EveDL and

MPSSEHAL together form a Stack to allow communications with the EVE display via the FTDI

FT4232H Hub Module. The class Sensors forms the interface to the I2C proximity and colour

sensors.

Figure 3.2 Class Diagram

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 10
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.1 FTApp

An expanded model of the FTApp Class is shown below:

Figure 3.3 FT_App Class

It can be seen that the class contains the definition of several methods including a constructor,

Configure and TaskLoop methods. In this case a single instance of the Class FTapp is created in

the application and retained in the main class variable app. A timer is then set to call EveRun()

after a 5 second delay. When EveRun is called it creates a Task which configures the app by

passing in a device object for the respective Interface device to which the EVE display is

connected. It then starts the main TaskLoop() method with the calls:

await app.Configure(myDevice);

await app.TaskLoop();

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 11
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.2 Task Loop

The Task loop is the main point of execution which runs as a continuous infinite loop.

 for (int loop = 0; true; loop++)

 {

 …

The FTApp class aggregates a Sensor class as a colProxObject. This object is used to obtain a set

of readings from the connected colour and proximity sensors with:

proximity = await colProxSen.GetProximity();

 color = await colProxSen.GetColor();

The function then calls its class’s private method DoSensors with the values for proximity and

colour as parameters. The DoSensors method is then responsible for building up the graphics

command to construct the screen displayed on the LCD panel of EVE. The application

communicates with EVE by the Graphics communication stack, the top of which is formed by the

Class CoPro. The app refers to CoPro by means of the class member variable eve.

Within the Do Sensors method the display list is built up from graphic primitives.

3.2.1 The graphics primitives:

The EVE graphics controller accepts a number of graphics primitives and widgets which can be

used to display a range of graphical attributes from simple objects such as points/lines through to

more complex items such as gauges, dials and images. These graphics items are represented in

the code as a set of classes from which the Application developer may instantiate an object. For

example, text can be displayed with the command below:

CoPro.Text hw = new CoPro.Text(280, 90, 28, 0, "Hello, World");

The constructor for the Text class is prototyped as

public Text (uint inx, uint iny, uint infont, byte inoptions, string intext)

where

 inx is the x coordinate of the location the text is to be placed,

 iny is the y coordinate of the location the text is to be placed,

 infont is the font to be used

inoptions is an options variable

inText is a standard C# string representing the text to be displayed.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 12
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

It can be seen that the action of this statement is to construct a Text object containing the string

“Hello, world” and to be displayed at coordinate (280,90) and to be rendered in the system font

28.

The object is assigned to the variable hw.

In basic terms the hw object is sent to the display by pushing it onto a FIFO stack. However,

before this can be done a number of Display commands must be constructed to both precede and

terminate the build-up of the screen. This will be discussed in following sections.

The following class diagram shows a subset of the co-processor Graphics Library commands which

are available for the Application developer. It can be seen that the classes exist in a shallow

inheritance hierarchy where common functionality is implemented in the FTEveCmd base class.

Figure 3.4 Class diagram of the Co-Processor Graphics Library

In Addition to the Co processor graphics object, the Stack also exposes the Display List

commands. The display list commands are a more primitive set of commands for drawing

primitives etc. and are defined in the EVDL class. However they share the IFTEveCmd in common

with the Co-Processor commands.

Figure 3.5 Display List commands

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 13
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The interface between the class at the top of the graphics stack and the user application is in

essence a FIFO stack. The stack holds IFTEveCmd types and the CoPro Class exposes a public

method PushCmd() which takes a IFTEveCmd argument and its prototypes:

 public void PushCmd(IFTEveCmd cmd)

In this way the application can exploit polymorphic behaviour and instantiate both CoPro and

Display list command objects and pass them to the Graphics Stack., e.g.

eve.PushCmd(new CoPro.Dlstart());

 eve.PushCmd(new EveDL.ClearColourRGB(0x00, 0x00, 0x00));
 eve.PushCmd(new EveDL.Clear());

The operation is illustrated in the diagram below, where it can be seen that the user application

creates a graphic object, essentially new’ing a Text object for example. This is pushed on to the

graphics FIFO with the PushCmd. The application is then free to continue while a thread within

CoProcessor removes the Commands from the other side of the FIFO, where this can be processed

prior to sending the appropriate data to Eve.

Figure 3.6 Graphics stack illustration

Line

Gauge

Button

Button

Gauge

Circle

…

…

FTApp

CoPro

Eve / FT800

PushCmd()

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 14
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.3 Display Screen

The EVE devices require a number of initial commands to initiate the display of a particular screen.

Then, once the actual content has been sent, a set of three commands are used to commit the

screen to the display. These commands are provided within DLPre() and DLPost() respectively.

The DLPre command is written as:

private void DLPre()

 {
 eve.PushCmd(new CoPro.Dlstart());
 eve.PushCmd(new EveDL.ClearColourRGB(0x00, 0x00, 0x00));
 eve.PushCmd(new EveDL.Clear());
 eve.PushCmd(new EveDL.ColourRGB((byte)0x00, (byte)(0x00), (byte)(0x00)));

 }

As shown, the preamble consists of a DLStart command followed by clearing the screen to a

defined colour.

 The DLPost command is written as:

 private void DLPost()
 {
 eve.PushCmd(new EveDL.Display());
 eve.PushCmd(new CoPro.Swap());
 eve.PushCmd(new CoPro.Flush());

 }

As shown, to complete the actions to display a screen, the Display command is appended to the

list followed by a swap command. The flush is used to indicate the end of the overall data set for

the new screen to be created.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 15
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The complete example from the Sample application method DoSensors is as follows:

 DLPre();
 if (p.Valid)
 {
 radius = (ushort)(350 * Math.Log10(num));
 colName = colProxSen.GetColourName(col);

 eve.PushCmd(new CoPro.Gradient(240, 0, (uint)0x000000,

240, 320, (uint)0x808080));
 proxTxt = "FTDI IoT";// + Convert.ToString(num);
 eve.PushCmd(new CoPro.Text(220, 0, 31, 0, proxTxt));

 eve.PushCmd(new CoPro.Text(280, 90, 28, 0, "Red " +
 col.R.ToString()));
 eve.PushCmd(new CoPro.Text(280, 110, 28, 0, "Green " +
 col.G.ToString()));
 eve.PushCmd(new CoPro.Text(280, 130, 28, 0, "Blue " +
 col.B.ToString()));
 if (radius > 500)
 eve.PushCmd(new CoPro.Text(280, 180, 28, 0, "Hue: " +
 colName.ToString()));
 else
 eve.PushCmd(new CoPro.Text(280, 180, 28, 0, "Hue: "));
 ushort X0 = 120;
 ushort Y0 = 79;

 eve.PushCmd(new EveDL.Begin(DLprim.POINTS));
 eve.PushCmd(new EveDL.ColourRGB((byte)0xFF, (byte)0xFF, (byte)0xFF));
 eve.PushCmd(new EveDL.PointSize((ushort)(1950)));
 eve.PushCmd(new EveDL.Vertex2II((ushort)X0, (ushort)Y0, 0, 0));
 eve.PushCmd(new EveDL.ColourRGB((byte)0x00, (byte)0x00, (byte)0x00));
 eve.PushCmd(new EveDL.PointSize((ushort)(1900)));
 eve.PushCmd(new EveDL.Vertex2II((ushort)X0, (ushort)Y0, 0, 0));
 if (radius > 500)
 eve.PushCmd(new EveDL.ColourRGB((byte)col.R, (byte)col.G,

 (byte)col.B));
 else
 eve.PushCmd(new EveDL.ColourRGB((byte)0xff, (byte)0x00,

 (byte)0x00));
 eve.PushCmd(new EveDL.PointSize((ushort)(radius+100)));
 eve.PushCmd(new EveDL.Vertex2II((ushort)(X0), (ushort)(Y0), 0, 0));

 }

 DLPost();

The functions starts with a DLPre() as discussed above. A gradient is drawn to act as a

background. Following this some local variables are assigned values for proximity and the RGB

data for colours. These variables are then used to provide appropriate strings for the TEXT

graphics commands.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 16
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

A Begin(points) command is added to initiate the drawing of a number of points. A series of

Vertex, Color_RGB and Point_Size commands are then used to plot the circles used in the display.

A large white point followed by a slightly smaller black point form the white border circle.

A third circle centred on the same coordinate varies in size and colour depending on the values

read from the proximity and colour sensors. The colour of this indicator circle is set to red whilst

no object is in close proximity, but changes to match the RGB colour of the object when it is in

close proximity. The radius and position of the circle are then declared, with the radius being

proportionate to the proximity sensor output.

 eve.PushCmd(new EveDL.PointSize((ushort)(radius+100)));
 eve.PushCmd(new EveDL.Vertex2II((ushort)(X0), (ushort)(Y0), 0, 0));

Finally, the DLPost causes the graphics commands to be flushed and presented on the Display

screen.

Figure 3.7 Illustration of the display

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 17
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.4 I2C Sensor Functions

The code for the sensors can be found in the file Sensors.cs which is within the supplied source

code zip. The application I2C functions are arranged into several layers which are described in this

section:

 Sensor Application Layer

 I2C API Layer

 D2xx Interface Layer

It is recommended that these functions are modified by the developer of the final application

based on their chosen sensors in order to provide the best performance and to provide error

checking tailored to the sensors, some of which is omitted here for clarity. The application notes

AN_108 and AN_135 should be consulted for further details (see Appendix A – References).

3.4.1 Sensor Application Layer

This layer provides the functions which are called by the main application to configure and read the

I2C sensors. The code here is specific to the address and register map of the sensors being used,

and in turn calls the generic I2C functions lower down. This layer provides an easy way to modify

the application to utilize different I2C sensors.

 await ColourSensorConfig();

 await ProximitySensorConfig();

 await ColourSensorReading();

 await ProximitySensorReading();

Each sensor has a Config function which is used to set up the registers in the sensor. This would

typically be called once during application start-up to get the sensor configured to the point where

the results can be read. Each sensor also has a shorter Reading function which is called each time

a reading is to be taken.

Colour

For colour readings, the sensor provides four 16-bit values which represent the clear, red, green

and blue quantities of light detected. The sensor measures the light reflected off the object and so

requires a white LED to illuminate the object. The application performs some basic operations on

the R, G and B results to scale these into 8-bit R, G and B values which can be used by the FT800

device. The resulting RGB value is returned. The demo could be extended by performing more

comprehensive calibration and scaling to improve accuracy. The accuracy is also dependent on the

ambient conditions in which the sensor is used. A combination of mechanical enclosure design and

the processing carried out on the readings can be used to optimise this.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 18
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Proximity

For proximity readings, the sensor has an IR source and detector on the same IC. It also has an

ambient light sensor which is not used in this application. A status register indicates the readiness

of a sample and the result can then be read. The resulting value from the Prox_Value register is a

16-bit value which varies from 0 to 65535 in relation to the distance of the object, with 65535

being the closest. This value is passed to the main application. The main application scales this

factor to provide a response that appears linear to the user. As with the colour sensor, the

proximity code could be extended to utilize the full feature set of the sensor and carry out

calibration or alternative sensors could be used instead.

The function also checks the value of the proximity in comparison to a threshold of 1000. If the

proximity is greater than 1000, the GPIO variable is configured such that bit 3 is low. Otherwise

this bit is set high. A low value will turn on the white LED to illuminate the object to allow colour

readings to be taken, since the object is now close enough to obtain a valid reading from the

colour sensor.

Using the I2C functions

An example of writing to a register is shown below, where the devices I2C address is sent followed

by the register address and the data to be written. The address is defined in the code as already

shifted to the upper 7 bits, allowing the LSB to be OR’ed with the R/W bit.

await SendI2CStart();

 await SendByteAndCheckACK((byte)(VCNL40x0_ADDRESS | 0x00)); // R/W bit is 0

 await SendByteAndCheckACK((byte)(REGISTER_PROX_CURRENT));

 await SendByteAndCheckACK((byte)(20));

 await SendI2CStop();

An example of reading from a sensor using the individual byte functions is shown below, where a

write occurs to the devices I2C address specifying the register to be read. A repeated start follows,

and then a read cycle to the devices I2C address which will return the value. The read is sent with

a NAK to indicate to the sensor that the Master does not wish to read any further bytes in this

transaction.

await SendI2CStart();

await SendByteAndCheckACK((byte)(VCNL40x0_ADDRESS | 0x00)); // R/W bit is 0

await SendByteAndCheckACK((byte)(REGISTER_COMMAND));

await SendI2CStart();

await SendByteAndCheckACK((byte)(VCNL40x0_ADDRESS | 0x01)); // R/W bit is 1

await ReadByteAndSendNAK();

Command = InputBuffer2[0];

await SendI2CStop();

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 19
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.4.2 I2C API Layer

This layer constructs sequences of MPSSE commands in order to implement the various operations

required by the I2C protocol.

One thing to note when comparing the source code for these functions to code for the FT232H

(e.g. AN_255) is that the pin directions are written using the MPSSE GPIO low byte command each

time the line changes between reading and writing. The FT2232H and FT4232H do not have an

open-drain feature but an equivalent operation can be created by tri-stating the data out line when

not transmitting onto the I2C bus. The MPSSE makes this possible by allowing GPIO writes to be

sent in the same buffer of commands as the clocking operation.

GPIO

The functions in this layer use this combination of GPIO writes and clocking commands to

implement the I2C protocol. When performing GPIO writes, the function will define the states of

the bits 0-2 as required for I2C implementation and will set the pin state and direction from global

variables GPIO_Low_Dat and GPIO_Low_Dir. Therefore, the application may set these global

variables at any time and their values will be updated onto the pins the next time an I2C

transaction occurs. For example, in this demo a line is used to control the LED on the colour sensor

module. It would also be possible to create a function which would perform no I2C transaction but

just mask and write the new GPIO states. Likewise, the MPSSE has commands for reading GPIO

and so the lines can be used as inputs too.

I2C Functions

A description of the functions provided follows:

InitMPSSE_For_I2C()

After a port on the device has been opened and a handle obtained, this function is called to put the

port into MPSSE mode and configure it for I2C usage.

SendI2CStart()

This function uses the MPSSE commands to write the state and direction of the port used for I2C.

The sequence of pin states causes an I2C Start condition on the bus. As with all functions in this

layer, the non-I2C bits 3-7 of the port are set as per the bits 3-7 of the global GPIO variables.

SendByteAndCheckACK(byte DataByteToSend)

This function will clock out a byte and then clock in a single bit which is the ACK bit from the

Slave.

ReadByteAndSendACK()

This function will clock in one byte from the I2C slave and will clock out a single logic 0 bit to send

an ACK.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 20
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

ReadByteAndSendNAK()

This function will clock in one byte from the I2C slave and will clock out a single logic 1 bit to send

a NAK. This will typically be used for the last read in a sequence, where the slave interprets the

NAK as an indication that the Master does not want to read further bytes.

Read2BytesAndSendNAK()

This function is provided as an example where multiple bytes can be read within a single buffer of

commands to the MPSSE. This follows a similar principle to the single byte reads mentioned above

but buffers the commands up and sends with a single FT_Write. This is more efficient when

reading multiple bytes because the USB host will normally send the entire command set on a

single USB microframe. In comparison, calling the single byte read function twice will require

several USB microframe times for the write of the command, return of the byte which was clocked

in and then sending the next set of MPSSE commands. Taking advantage of the MPSSE’s flexibility,

various custom configurations can be created depending on when the host needs to check the

result of a transaction before beginning the next.

SendI2CStop()

This function uses the same principle as the SendI2CStart function, but uses the GPIO states to

create the Stop condition.

3.4.3 D2xx interface layer

This layer is responsible for communicating with the FTDI D2xx driver. It performs the writing of

the MPSSE command buffers generated by the layer above and performs the reading of data which

comes back from the FT4232H.

D2xx_FlushBuffer()

This function can be called to read any data remaining in the driver’s read buffer in order to ensure

the buffer is clear. It is only used during the initialization of the device in this application.

MyD2xx_WriteBytes(byte[] buf, uint bytesToWrite)

This function performs an FT_Write and checks that the correct number of bytes were sent.

D2xx_ReadBytes()

This function reads a specified number of bytes from the device. It waits in a loop until the

requested number of bytes are read or until a software timeout expires (500 times round the

loop). Each time through the loop will call the myFtdiDevice.GetRxBytesAvailable function followed

by myFtdiDevice.Read if the bytes available is greater than 0. Any data read is added to a buffer

which will be read by the main application. In this application, the amount of data being read at a

time is only small, often just one byte, and so will normally come back quickly in a single USB

microframe but the function has been written to demonstrate a technique for larger amounts of

data.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 21
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4 Summary

The hardware and source code described in this application note demonstrate the way in which

FTDI’s bridging and display solutions can be used to provide both the I/O capabilities and local

user interface when developing IoT applications.

The code provided shows how FTDI’s new D2xx Universal Windows Driver for UWP can be used to

interface to these bridging/display devices under the Universal Windows Platform and provides a

starting point for developing these applications.

FTDI have a wide range of USB bridging devices and EVE display controllers which would allow this

demo to be extended significantly to create a fully featured sensor and display application with

local touch screen control. This makes them ideal companions to the small embedded processor

boards such as the Raspberry Pi 2 which are becoming increasingly popular in IoT and general

sensor applications.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 22
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114
Taiwan , R.O.C.
Tel: +886-2-8797 1330
Fax: +886-2-8751-9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,

Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications
assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the

user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from

such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 23
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix A – References

Document References

FT4232H Hi Speed Hub module

EVE Display Controllers

Raspberry Pi

D2xx Programmers Guide

AN_108 MPSSE Command Set

AN_135 MPSSE Basics

Colour Sensor

Proximity Sensor

Visual Studio Community

Acronyms and Abbreviations

Terms Description

USB Universal Serial Bus

RPi Raspberry Pi embedded computer

IoT Internet Of Things

UWP Universal Windows Platform

MPSSE Multi-Protocol Synchronous Serial Engine

EVE Embedded Video Engine

I2C Inter-Integrated Circuit bus

SPI Serial Peripheral Interface

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_USB_HI-SPEED_SERIAL_HUB_MODULE.pdf
http://www.ftdichip.com/EVE.htm
https://www.raspberrypi.org/
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_135_MPSSE_Basics.pdf
https://www.adafruit.com/product/1334
http://www.mikroe.com/click/proximity/
https://dev.windows.com/en-us/downloads

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 24
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Figures

Figure 1 FTDI IoT Demo Hardware .. 3

Figure 2.1 Overview of system Elements .. 4

Figure 2.2 Measurement system ... 5

Figure 2.3 Schematic ... 7

Figure 3.1 Solution Explorer .. 8

Figure 3.2 Class Diagram ... 9

Figure 3.3 FT_App Class .. 10

Figure 3.4 Class diagram of the Co-Processor Graphics Library ... 12

Figure 3.5 Display List commands ... 12

Figure 3.6 Graphics stack illustration ... 13

Figure 3.7 Illustration of the display .. 16

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

 Application Note

 AN_475 Windows 10 IoT
 Version 1.0

 Document Reference No.: FT_001334 Clearance No.: FTDI# 503

 25
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix C – Revision History

Document Title: AN_475 FTDI Windows 10 IoT Solutions

Document Reference No.: FT_001334

Clearance No.: FTDI# 503

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 2016-05-23

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0
http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_475%20Version%201.0

	1 Introduction
	1.1
	1.1
	1.1 Overview
	1.2 Scope

	1
	1
	2 Hardware
	1
	3 Example Program
	3.1 FTApp
	1.1
	3.2 Task Loop
	3.2.1 The graphics primitives:

	3.3 Display Screen
	3.4 I2C Sensor Functions
	3.4.1 Sensor Application Layer
	3.4.2 I2C API Layer
	3.4.3 D2xx interface layer

	1
	4 Summary
	5 Contact Information
	Appendix A – References
	Document References
	Acronyms and Abbreviations

	Appendix B – List of Tables & Figures
	List of Figures
	List of Figures

	Appendix C – Revision History

