
 Use of Bridgetek devices in life support and/or safety applications is entirely at the user’s risk, and

the user agrees to defend, indemnify and hold Bridgetek harmless from any and all damages,
claims, suits or expense resulting from such use.

Bridgetek Pte Ltd (BRTChip)
178 Paya Lebar Road, #07-03 Singapore 409030

Tel : +65 6547 4827 Fax : +65 6841 6071

Web Site: http://brtchip.com
Copyright © Bridgetek Pte Ltd

Application Note

AN_438

FT260 I2C Example in C#

Version 1.0

Issue Date: 2020-05-12

This document demonstrates using the FT260 as a USB-I2C Master interface
to read data from an I2C sensor. The application is written in C# and
provides an example of importing and using a subset of the LibFT260

functions in C# GUI applications. The overall application is similar to the USB
Power Meter shown in AN_355 but uses the FT260 in place of the FT232H.

http://brtchip.com/

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 2
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Table of Contents

1 Introduction .. 4

1.1 Overview ... 4

2 Hardware ... 5

2.1 UMFT260EV1A acting as USB to I2C master 6

2.2 Connections ... 6

2.3 Current Sensing ... 6

2.4 LDO Voltage Regulator .. 7

2.5 FT_Prog Configuration .. 7

3 Application .. 8

3.1 Main Window ... 8

3.2 Event Handlers .. 8

3.3 Chart Code... 12

4 Library ... 14

4.1 libFT260 .. 14

4.2 C# Imports .. 14

4.3 Using the Imported Functions ... 14

4.3.1 Opening and Initializing ... 15

4.3.2 Writing and Reading .. 15

4.3.3 GPIO Operations ... 18

5 Using the Demo ... 19

6 Conclusion ... 22

7 Contact Information .. 23

Appendix A – References ... 24

Document References ... 24

Acronyms and Abbreviations ... 24

Appendix B – List of Tables & Figures 25

List of Tables ... 25

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 3
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

List of Figures ... 25

Appendix C – Revision History 26

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 4
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

1 Introduction

1.1 Overview

The FT260 device offers a versatile bridging solution from USB to I2C Master, UART and GPIO. One
popular application is to read data from one or more I2C sensors.

As a HID class device, it is possible to use HID requests directly from the application. FTDI also
provide a library libFT260 which can be used from C++ applications and provides a set of functions
allowing the FT260 to be easily integrated into the application with familiar functions such as

FT260_I2CMaster_Read.

C# is a popular language, especially where a Windows Graphical User Interface (GUI) based
interface is desired, and so this application note provides a simple example of calling the functions
in libFT260 from a C# application in order to read values from a sensor and display them on a GUI.

The application shown here is a small current and voltage measurement device which is also useful
to have when debugging USB hardware designs or other low voltage DC circuits. It can be

modified to support a range of other sensors and applications.

Figure 1 - USB Power Meter connections

Note: The information provided in this document may be subject to change in future. Refer to the

latest versions of the datasheets and documentation for all components and libraries used in your
design for the latest information. If any content in this application note conflicts with the device
documentation, the manufacturer’s device documentation should take priority. FTDI are not

responsible for the specifications of any third-party devices used here, always consult the latest
documentation from the manufacturer as these devices may be subject to change out with the
control of FTDI.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 5
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

2 Hardware

The hardware was constructed using the UMFT260EV1A evaluation module acting as a USB to I2C
bridge. The remainder of the circuit consists of the current measurement circuit based around the
Texas Instruments INA219, an additional LDO to power the INA219 and some LEDs to indicate
status.

Figure 2 - Schematic

Figure 3 - Prototype hardware unit

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 6
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

2.1 UMFT260EV1A acting as USB to I2C master

The UMFT260EV1A module provides all of the necessary hardware needed to use the FT260
including an external EEPROM fitted on the module PCB for configuration data and the USB
connector.

This module has a dual-in-line footprint which can be used with breadboards and prototyping
boards making it easy to get started in evaluating and developing with the FT260.

The FT260 IC itself is available in TSSOP and QFN IC packages allowing a compact PCB for a final
product design.

The module has a pair of jumpers to select the mode of the FT260, allowing UART + I2C, UART
only or I2C only. In this case the I2C only mode was selected by setting the jumpers as follows:

 DCNF0 high Jumper pins 1-2 on JP7
 DCNF1 low Jumper pins 2-3 on JP9

Figure 4 - UMFT260EV1A evaluation module

2.2 Connections

The example hardware includes several USB connectors.

The USB connector on the rear panel is for the FT260 itself, allowing the computer running the C#

application to control the FT260 and take readings.

The front panel has two USB connectors which are effectively daisy chained together, passing GND,
USB Data + and USB Data - directly through. The Vbus is also connected through with the small
value sense resistor in the path. These 2 connectors allow the device to be connected in the middle
of the link being tested and to be almost transparent to the link under test.

A box header on the rear panel also allows access to the current in, current out and ground lines
via jumper wires.

2.3 Current Sensing

In this example and many other similar user cases, it is preferred to insert a resistor in the 5V

Vbus line of the connection under test to measure the current instead of instead of inserting a
resistor in the ground line. The latter case can result in the measurement equipment causing
ground differences in the circuit under test and the accuracy can also be affected if the circuit
under test has other paths to ground. The resistor in the Vbus line will still cause a small drop in

voltage but this is often still preferable to inserting the resistor in the ground line. However,
measuring the current on the Vbus line (high side current measurement) is significantly more
complex than ground referenced measurements and requires significantly more complex analog
circuit or a specialized IC.

The INA219 used here is a high-side current shunt monitor device which allows the Vbus current to
be measured. It measures the small voltage difference across a low-value current shunt resistor in

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0
http://www.ftdichip.com/Products/Modules/DevelopmentModules.htm#UMFT260EV1A
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 7
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

order to measure the current flowing and converts this to a ground referenced voltage and then
reads this via an ADC. A second ADC channel also converts the voltage present on the downstream
side of the shunt resistor. Lines A0 and A1 select the I2C address of the device.

There are a variety of devices available which can perform high side current measurement at

various current levels and accuracies and with different values of sense resistor. The INA219 used
here also has various internal registers which can be used to configure the range and features.

2.4 LDO Voltage Regulator

A small 3v3 LDO was used in this case to provide a stable voltage to the INA219 as the
UMFT260EV1A’s 3v3 out was used to power the blinking status LED etc. However, in many cases
the circuit could be simplified even further by powering a low-current sensor from the 3v3 output
of the module. The FT260 datasheet has details of the output current capabilities etc.

2.5 FT_Prog Configuration

The FT260 has various configuration options available via its internal one-time-programmable

eFUSE memory or an external EEPROM (which shares the I2C lines and is read on start-up if
present). In many cases however, the device’s built-in defaults can be used without any
programming

Like other FTDI bridging solutions, the settings can be configured if required over the USB
interface by connecting the module to a PC and running the free FT_Prog software provided by
FTDI.

Programming of the external EEPROM requires no additional hardware, however, in order to
program the eFUSE, the FT260 requires an additional programming voltage (3.8V) on its FSOURCE
pin. The programming board, UMFTPD3A, provides a connection bridge between the FT260 and a
USB host for supplying the power source, for timing control of the eFUSE, and also for
communicating with the programming utility FT_Prog. Further details can be found in the

UMFTPD3A datasheet.

It is advised to provide an external EEPROM IC (or the footprint for this to be added) where
possible. This is especially true during development where the settings may need to be changed
several times which would not be possible with the one-time programmable eFUSE.

In this example, the default settings are suitable. The GPIO2 line may be set as PWREN#

optionally to indicate enumeration and suspend status. The description may also be changed to
identify the device, for example “FT260 Current Meter” in this case.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0
http://www.ftdichip.com/Support/Utilities.htm#FT_Prog
http://www.ftdichip.com/Products/Modules/DevelopmentModules.htm#UMFTPD3A
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UMFTPD3A.pdf

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 8
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3 Application

The software was written in C# to provide a GUI-based interface. DLL Imports were used to import
the C++ functions provided in the libFT260 library. The source code project can be downloaded
using the link in Appendix A – References.

3.1 Main Window

The main window of the application is shown in Figure 5. The application has the following
controls on its main window:

 Rolling chart showing the most recent 500 current consumption measurements
 Numeric readouts of the voltage and current measured in the most recent sample
 Radio buttons to scale the data allowing maximum ranges of 200mA, 800mA and 1600mA
 Buttons for initializing, starting and stopping measurements.

This trace below shows an optical mouse which consumes approximately 6mA in a low power state

with its LED dimmed when idle. The LED current increases when the mouse is moved as the LED
goes to full brightness for accurate position tracking.

Figure 5 - Main window of application

3.2 Event Handlers

The software is based around the handling of the events resulting from clicking the buttons on the

main window. The buttons are enabled or disabled as required to gate the flow of the application.
For example, when the application starts, only the Initialize and Exit buttons are enabled.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 9
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Figure 6 - Flowchart of Initialisation (INIT button)

Check for device
FT260_CreateDeviceList

Windows
Exception?

Initialise Button

No DLL Error

END
Open FT260

FT260_OpenbyVIDPID

Initialise device
FT260_I2C_Master_Init

Configure INA219
FT260_I2C_Write

Status LED Config
FT260_GPIO_Dir

Status LED On
FT260_GPIO_Write

Open FT260
FT260_OpenbyVIDPID

END

This sequence is
triggered when the
Initialise button is
clicked by the user. It

checks for the presence
of the libFT260 DLL
using a try-catch and if
present, opens the
FT260 and configures
the INA219 so that it is
ready to take

measurements.
Y

N

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 10
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Figure 7 - Flowchart of main measurement loop (RUN button)

Running = True

Running?

RUN Button

LED On
FT260_GPIO_Write

END

Blink LED
FT260_GPIO_Write

Select REG Voltage
FT260_I2C_Write to INA219

Read Voltage value
FT260_I2C_Read

Calculate Voltage
Add to chart buffer

Update Chart and

digital readouts
Invalidate Window

Select REG Current
FT260_I2C_Write to INA219

Read Current value
FT260_I2C_Read

Calculate Current
Add to chart buffer

Note: Running flag may be set
false by the STOP button

This sequence is
triggered when the Run

button is clicked by the
user. It runs in a loop,
taking measurements
continuously from the
INA219. A flag
‘Running’ is set true

and the loop runs until
this flag is set false by
the Stop button.

Y

N

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 11
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Figure 8 - Flowchart of stopping logging (STOP button)

Figure 9 - Flowchart of closing device (EXIT button)

DLL
Detected?

Close FT260 Handle
FT260_Close

END

EXIT Button

LED off
FT260_GPIO_Write

Close Application

This sequence is
triggered when the Exit
button is clicked by the
user. If the DLL is
present, it closes the
handle to the FT260. If
the DLL was not

present, the application
is just closed to avoid a
Windows exception.

Y

N

Running = False

END

STOP Button
This sequence is
triggered when the
Stop button is clicked
by the user. It sets the
‘running’ flag to false
which causes the

measurement loop to
stop running.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 12
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

3.3 Chart Code

The application uses a single buffer to store the 500 measurement points (corresponding to the
width of the chart) and to plot the resulting chart. The buffer is implemented in software as a
circular buffer with write and read pointer.

Adding current values

On the input side, the main measurement loop takes each new current reading from the INA219
and adds it to the next place in the buffer, overwriting the oldest data point. The variable
GraphInputPointer is used as the input pointer which is incremented as each new value is added.
The buffer therefore contains the most recent 500 data points. The current is stored as a value in
milliamps.

Drawing the Chart

The chart is drawn within a PictureBox object. This is re-painted whenever a picturebox1.paint
event occurs which can be the loading of the form or when manually trigged by the program loop
when it adds a new data point. The entire chart is re-drawn including the scale values such that
any change in the scale selected by the user is applied immediately.

After plotting the scales and tick marks etc., the actual chart line is drawn. Chart data is taken
directly from the same circular buffer used to store the 500 data points by the routine which reads
from the INA219.

The plotting begins at x = 0 with the oldest data point (i.e. from index GraphInputPointer + 1) and
continues until x = 499 (which will contain the latest data point measured). Each time the chart is
updated, the oldest value will be at the left hand side and the newest value will be at the right-

hand side, causing the chart to scroll left as new points are added.

The data is scaled depending on the range selected by the user so that the selected range will fit
entirely in the 400 pixels height of the chart.

Figure 10 - Chart plotting

Data
Index

Data
(mA)

 Chart
X

Chart
Y

0 750 189 375

110 450 499 225

111 24 0 12

499 500 188 250

New
Reading

(0, (400-12))

(188, (400-250))

(499,(400-225))

Note: 800mA scale shown in this example

Y values are divided by 2 when

drawing chart to fit in the 400 pixel

high chart area

Y coordinate is created by subtracting

value from 400 as origin is at the top-

left

Values used by Chart
plotting routine

(0,0)

500 pixels

400
pixels

(189, (400-375))

Values stored in
Data Array

Div by 2
For 800mA

 scale

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 13
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

If the value exceeds the range set, the y value is truncated at 399 and the corresponding pen
colour is set to red to indicate the exceedance. The numerical readout will continue to read the
correct value up to 1600mA even if the chart range is set for 200mA etc.

Coordinates of a picture box are taken from the top down, and so each Y coordinate is adjusted by

Y = (400 – Y) so that they are now targeted to the bottom of the window with positive Y in the up
direction.

The chart is then created by drawing a series of lines between pairs of points to create a single
chart line.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 14
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4 Library

4.1 libFT260

The libFT260 DLL is provided to make it easy to use the I2C, UART and GPIO features of the FT260
without needing to handle the low-level USB HID requests.

The library is provided for C++ applications but in this case the functions were imported as
described in the next section to allow use in a C# graphical user interface.
The latest version can be downloaded from the FT260 product page along with the accompanying

programming guide.

LibFT260 release 1.1.2 now includes a 64-bit DLL in addition to the earlier 32-bit DLL. The updated
sample code can now be built for both 32-bit and 64-bit. The respective DLLs have been copied
into the Debug and Release folders in the supplied code. The build configuration can be set for the

required combination of Release/Debug and x86/x64 using the drop-downs shown below.

Figure 11 - Build Configurations

4.2 C# Imports

The libFT260 library is provided as a C++ based library and so the functions must be imported in
order to use with C#.

A subset of the available DLL functions were imported as necessary for this application example
but the other functions could also be imported in a similar way. The function prototypes and
associated data types can be found in the header file provided with libFT260.
An example of the import for I2C master Read is shown below:

// LIBFT260_API FT260_STATUS WINAPI FT260_I2CMaster_Read(FT260_HANDLE ft260Handle, uint8
deviceAddress, FT260_I2C_FLAG flag, LPVOID lpBuffer, DWORD dwBytesToRead, LPDWORD
lpdwBytesReturned, timeout);
[DllImport("LibFT260.dll")]

private static extern FT260_STATUS FT260_I2CMaster_Read(IntPtr ft260Handle, uint
deviceAddress, FT260_I2C_FLAG flag, ref byte lpBuffer, UInt32 dwBytesToRead, ref ushort
lpdwBytesReturned, UInt32 Timeout);

4.3 Using the Imported Functions

This section provides an overview of how the libFT260 functions are used to implement the I2C
communication detailed in the I2C peripherals datasheet.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0
http://www.ftdichip.com/Products/ICs/FT260.html

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 15
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

4.3.1 Opening and Initializing

Initially, a call to FT260_CreateDeviceList is used to check how many FT260s are present. In

addition, this is placed in a try-catch as it will throw a Windows exception should the LibFT260 DLL
not be present (by default expected in the application folder). This allows the application to end
gracefully if the DLL is not present rather than crashing.

try
{
 Status = FT260_CreateDeviceList(ref NumDev);
}
catch (DllNotFoundException)
{
 SetControls_Error("No DLL Found", "The DLL is not present in the application folder");
 return 1;
}
catch
{
 SetControls_Error_AllowReInit("Stopped", "Capture stopped: Click Initialise and the
Start to begin again");
 return 1;
}
if (Status != FT260_STATUS.FT260_OK)
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return 1;
}
DLL_Loaded = true;

The FT260 is opened by a call to FT_OpenByVidPid which returns a handle which can be used to

reference the device thereafter.

A call to FT260_I2CMaster_Init is used to configure the I2C master in the FT260.
The application can be extended to open a particular FT260 etc. in this part of the code.

4.3.2 Writing and Reading

After opening the device, this example primarily uses the FT260_I2CMaster_Write,
FT260_I2CMaster_Read and FT260_GPIO_Write functions during the main application loop.

The INA219 has six registers which provide control settings and results.

Figure 12 - INA219 Registers

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 16
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The waveforms for writing and reading are shown below (please consult the INA219 datasheet for
more information). Many different I2C peripherals use a similar scheme.

Figure 13 - INA219 Write and Read sequences

During initialization of the application, a write is performed to the INA219’s configuration register.
Here, an array is created containing the register index within the INA219 (the configuration

register has index 0) followed by the values to be written (0x0EEF). A write is then performed to
the I2C address of the INA219 (0x40). The three bytes from the array are written. This results in
the same sequence of I2C_Address -> Reg_address -> Data_MSbyte -> Data_LSbyte shown in the

upper waveform in Figure 13.

byte[] writeDataConfig = new byte[10];

writeDataConfig[0] = 0x00;
writeDataConfig[1] = 0x0E;
writeDataConfig[2] = 0xEF;

int size = Marshal.SizeOf(writeDataConfig[0]) * writeDataConfig.Length;
IntPtr pnt = Marshal.AllocHGlobal(size);
Marshal.Copy(writeDataConfig, 0, pnt, writeDataConfig.Length);

numBytesToWrite = 3;

Status = FT260_I2CMaster_Write(ft260handle, 0x40, FT260_I2C_FLAG.FT260_I2C_START_AND_STOP,
pnt, numBytesToWrite, ref writeLength);

if ((Status != FT260_STATUS.FT260_OK) || (writeLength != numBytesToWrite))
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return 1;

}

In the main application loop, the voltage and current registers are read alternately in a continuous

loop. The voltage and current reading use the same procedure and the voltage is used as an
example here.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 17
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

First, the register to be read must be specified as a read operation will read data from whichever
register was last selected. A write operation is performed to the address 0x40 with the value 0x02
to select the Voltage result register. No data bytes are needed if the register is just being selected
and so only the first two bytes of the Write operation from Figure 13 are sent followed by the I2C
Stop.

byte[] VoltageAddressReg = { 0x02 };
numBytesToWrite = 1;
Marshal.Copy(VoltageAddressReg, 0, pnt, VoltageAddressReg.Length);

Status = FT260_I2CMaster_Write(ft260handle, 0x40, FT260_I2C_FLAG.FT260_I2C_START_AND_STOP,
pnt, numBytesToWrite, ref writeLength);

if ((Status != FT260_STATUS.FT260_OK) || (writeLength != numBytesToWrite))
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return;
}

A read is then performed as shown below. This will read two bytes from address 0x40 (the
INA219’s I2C address) from register index 0x02 set above (Voltage result). A timeout value of 5

seconds is specified which will ensure the function returns in the event of an error in reading the
bytes. The data will be put into buffer Reading[]. The status value is checked to ensure that no
errors occurred and the readLength parameter confirms how many bytes were read.

byte[] Reading = new byte[100];
numBytesToRead = 2;

Status = FT260_I2CMaster_Read(ft260handle, 0x40, FT260_I2C_FLAG.FT260_I2C_START_AND_STOP,
pnt, numBytesToRead, ref readLength, 5000);

if (Status == FT260_STATUS.FT260_OTHER_ERROR)
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return;
}

if (Status == FT260_STATUS.FT260_I2C_READ_FAIL)
{
 SetControls_Error_AllowReInit("Stopped", "Capture stopped: Click Initialise and the
Start to begin again");
 return;
}

if ((Status != FT260_STATUS.FT260_OK) || (readLength != numBytesToRead))
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return;
}

The final value is obtained by combining the two bytes into their original 16-bit value.

Marshal.Copy(pnt,Reading,0,(int)numBytesToRead);

// Calculate V in Volts
VoltageHighByte = Reading[0] & 0x7F;
VoltageLowByte = Reading[1] & 0xF8;

Voltage = (((VoltageHighByte * 256) + VoltageLowByte) / 2); // in Volts

The same process is repeated to read current values but this time setting the register index to
0x01 for the current result.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 18
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

The INA219 allows a read to be performed to a register which was already selected whereas some
sensors may require a write of the register index followed by a read to be performed in the same
I2C transaction with a repeat start between. One reason for using the separate write and read
transaction here is that the INA219 has a timeout which can trigger if the bus is idle in the middle
of a transaction for more than 28ms and which is included for SMbus usage and so separating the

write and read avoid the risk of timing out. This is not expected to time out due to the 1ms frame
rate of the USB link however which is well below the 28ms timeout.

4.3.3 GPIO Operations

GPIO writes are used to blink the status LED. The pin direction can be set during application
initialization, specifying the pin to be configured and the direction as shown below.

Status = FT260_GPIO_SetDir(ft260handle, FT260_GPIO.FT260_GPIO_F, 1); // STATUS LED

if (Status != FT260_STATUS.FT260_OK)
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return 1;

}

The pin can then be written using the GPIO_Write call as shown below.

Status = FT260_GPIO_Write(ft260handle, FT260_GPIO.FT260_GPIO_F, 0);
if (Status != FT260_STATUS.FT260_OK)
{
 SetControls_Error("Error", "Please check hardware and re-start application");
 return;

}

Note: it is necessary to check the status retuned by all calls to the FT260 functions and to check

any other returned parameters (e.g. BytesReturned which is returned by reference in a read
operation) to ensure that the function has completed successfully.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 19
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

5 Using the Demo

Connect the FT260’s USB port to the PC to be used for taking the measurements. The PC will
detect a HID class device and will install the HID driver provided with Windows. No additional
driver is required to be loaded. The device will show up as a HID-Compliant Device in Device
Manager (see Human Interface Devices section of Device Manager). The red power LED will be
illuminated.

Figure 14 - Connecting the FT260 to the host PC running the application

Open the demo application provided. This can be done by opening the .sln file provided in Visual
Studio 2013 or later and running the application from there, or by running the executable from the
release folder of the provided file. If running the exe directly, the DLL should be located in the
same folder as the final application.

In the application, click the Initialise button and the device will be configured and the Start button
will become enabled. The blue Status LED will illuminate to indicate that it is ready. If the
hardware isn’t connected and enumerated, or if the DLL is missing, an error will show in the status

window.

Click the Start button and the device will begin taking measurements. The blue Status LED will
blink to indicate readings being taken.

Connect the Upstream port of the meter (USB type B, marked “Host”) to the host of the link being
measured. For example, to the USB host port of a PC which is to host the device under test (this

can be the same PC as used for monitoring). A short cable is recommended to minimize any losses
in the cable. The voltage indication will now reflect the voltage of the upstream host (normally 5V).
Now, connect a USB peripheral to the downstream port of the meter (USB type A, marked
‘Device’). The device should enumerate as if connected directly to the host, as the meter passes

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 20
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

the lines through between upstream and downstream ports on its front panel. The current will be
indicated on the rolling chart and the numerical readouts.

Figure 15 - Connecting the meter to the link under test

The screenshot shows the USB Flash drive being connected. The current varies as the device
enumerates and is enabled. A peak in current occurs when a file is opened on the disk.

Figure 16 - Current consumed by a Flash drive

The range buttons can be used to select the most suitable current range whilst the application is

running. If the current exceeds the maximum value of the range currently set, the associated
points will appear red to indicate this. This is demonstrated below:

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 21
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Figure 17 - A high current device exceeds the 200mA range after enumeration

The technical specifications of the current measurement side of the demo are defined by the
INA219 and its accompanying components (e.g. sense resistor) and can be found in the INA219
datasheet.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 22
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

6 Conclusion

This application note has presented an example of how to use the FT260 device as a USB- I2C
bridge in a C# graphical user interface application.

The power meter application is a useful tool to have whilst debugging a variety of low voltage low
current DC devices and especially USB devices, where current consumption can provide a good

insight into what a device is doing and whether it is working as expected.

The application can be modified and extended to use a variety of different I2C sensors and
peripherals including ADCs, temperature sensors, LED controller ICs, GPIO expanders, MCUs with
I2C Slave ports etc. and can have several different sensors connected on the same I2C bus
provided that they have different I2C addresses.

Note: The hardware and software examples provided in this package (document and

accompanying code sample) are intended as a starting point for developing your own application
rather than a finished product. By using any information contained in this package, the user
agrees to take full responsibility for ensuring that their final product meets all operational and
safety requirements and for any consequences resulting from its use.

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 23
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

7 Contact Information

Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan
Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA
Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China
Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales
representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications

assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from

such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0
mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/
http://ftdichip.com/

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 24
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix A – References

Document References

FT260 product page

DS_FT260

Texas Instruments INA219

Source Code

Acronyms and Abbreviations

Terms Description

GPIO General-purpose input/output

HID Human Interface Device

I2C Inter-Integrated Circuit bus

LDO Low Drop Out regulator

USB Universal Serial Bus

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_399%20Version%201.0
http://www.ftdichip.com/Products/ICs/FT260.html
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf
http://www.ti.com/product/INA219
https://www.ftdichip.com/Support/SoftwareExamples/AN_438_Source.zip

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 25
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Tables

NA

List of Figures

Figure 1 - USB Power Meter connections .. 4

Figure 2 - Schematic ... 5

Figure 3 - Prototype hardware unit .. 5

Figure 4 - UMFT260EV1A evaluation module ... 6

Figure 5 - Main window of application .. 8

Figure 6 - Flowchart of Initialisation (INIT button) ... 9

Figure 7 - Flowchart of main measurement loop (RUN button) .. 10

Figure 8 - Flowchart of stopping logging (STOP button) ... 11

Figure 9 - Flowchart of closing device (EXIT button) .. 11

Figure 10 - Chart plotting ... 12

Figure 11 - Build Configurations .. 14

Figure 12 - INA219 Registers .. 15

Figure 13 - INA219 Write and Read sequences ... 16

Figure 14 - Connecting the FT260 to the host PC running the application 19

Figure 15 - Connecting the meter to the link under test ... 20

Figure 16 - Current consumed by a Flash drive ... 20

Figure 17 - A high current device exceeds the 200mA range after enumeration 21

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_438%20Version%201.0

 Application Note

 AN_438 FT260 I2C Example in C#
 Version 1.0

 Document Reference No.: FT_001419 Clearance No.: FTDI#554

 26
Product Page

Document Feedback Copyright © Future Technology Devices International Limited

Appendix C – Revision History

Document Title: AN_438 FT260 I2C Example in C#

Document Reference No.: FT_001419

Clearance No.: FTDI#554

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 2020-05-12

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_438%20Version%201.0
http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_438%20Version%201.0

	1 Introduction
	1.1 Overview

	2 Hardware
	2.1 UMFT260EV1A acting as USB to I2C master
	2.2 Connections
	2.3 Current Sensing
	2.4 LDO Voltage Regulator
	2.5 FT_Prog Configuration

	3 Application
	3.1 Main Window
	3.2 Event Handlers
	3.3 Chart Code

	4 Library
	4.1 libFT260
	4.2 C# Imports
	4.3 Using the Imported Functions
	4.3.1 Opening and Initializing
	4.3.2 Writing and Reading
	4.3.3 GPIO Operations

	5 Using the Demo
	6 Conclusion
	7 Contact Information
	Appendix A – References
	Document References
	Acronyms and Abbreviations

	Appendix B – List of Tables & Figures
	List of Tables
	List of Figures

	Appendix C – Revision History

